Back to Search Start Over

A combined experimental/numerical investigation on hygrothermal aging of fiber-reinforced composites

Authors :
Rocha, I.B.C.M. (author)
van der Meer, F.P. (author)
Raijmaekers, S. (author)
Lahuerta, F. (author)
Nijssen, R. P.L. (author)
Mikkelsen, L. P. (author)
Sluys, Lambertus J. (author)
Rocha, I.B.C.M. (author)
van der Meer, F.P. (author)
Raijmaekers, S. (author)
Lahuerta, F. (author)
Nijssen, R. P.L. (author)
Mikkelsen, L. P. (author)
Sluys, Lambertus J. (author)
Publication Year :
2019

Abstract

This work investigates hygrothermal aging degradation of unidirectional glass/epoxy composite specimens through a combination of experiments and numerical modeling. Aging is performed through immersion in demineralized water. Interlaminar shear testes are performed after multiple conditioning times and after single immersion/redrying cycles. Degradation of the fiber-matrix interface is estimated using single-fiber fragmentation tests and reverse modeling combining analytical and numerical models. A fractographic analysis of specimens aged at 50°C and 65°C is performed through X-ray computed tomography. The aging process is modeled using a numerical framework combining a diffusion analysis with a concurrent multiscale model with embedded hyper-reduced micromodels. At the microscale, a pressure-dependent viscoelastic/viscoplastic model with damage is used for the resin and fiber-matrix debonding is modeled with a cohesive-zone model including friction. A comparison between numerical and experimental results is performed.<br />Applied Mechanics<br />Materials- Mechanics- Management & Design

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1078620908
Document Type :
Electronic Resource
Full Text :
https://doi.org/10.1016.j.euromechsol.2018.10.003