Back to Search
Start Over
Preparation and Chromatographic Application of β-cyclodextrin Molecularly Imprinted Microspheresfor Paeoniflorin
- Publication Year :
- 2017
-
Abstract
- The application of molecular imprinting technology in the separation and purification of active ingredients in natural products was widely reported, but remains a challenge. Enrichment and separation are especially limited. A surface imprinting technique was reported to synthesize molecularly imprinted microspheres (MIMs) in this article. With paeoniflorin (PF) as the template molecule, β-cyclodextrin (β-CD) and acrylamide (AA) as the functional monomers, and poly(glycidyl methacrylate, GMA) microspheres (PGMA) as the backing material. MIMs have been characterized by FTIR and FESEM. Adsorption experiments indicated the adsorption capacity of MIMs was superior to those comparative non-imprinted microspheres (NIMs) and the binding isotherm of MIMs was in good agreement with the two-site binding model. The baseline separation of PF and its structural analogue albiflorin (AF) were achieved on the new MIMs packed column. MIMs showed good affinity and efficiency for separation of PF and AF compared with those comparative NIMs. The approach of fabricating MIMs is simple, rapid, and inexpensive, and may shed new light on the application of MIMs as a liquid chromatography stationary phase to separate and analyze PF and AF from the Red peony root extracts. © 2017 by the authors.
Details
- Database :
- OAIster
- Notes :
- English
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1080467774
- Document Type :
- Electronic Resource