Back to Search
Start Over
Bosonic systems in quantum information theory: Gaussian-dilatable channels, passive states, and beyond
- Publication Year :
- 2018
-
Abstract
- The symplectic formalism applied to the phase-space representation of bosonic quantum systems provides us with a powerful mathematical tool for the characterisation of Gaussian states and transformations. As a consequence, quantum information protocols involving the latter are very well understood from a theoretical point of view. Nevertheless, it has become clear in recent years that the use of non-Gaussian resources is necessary in order to perform various crucial information-processing tasks. An illustration of this fact can for instance be found in situations where a Gaussian no-go theorem precludes the use of Gaussian transformations in order to achieve a task involving Gaussian states, such as quantum entanglement distillation, quantum error correction, or universal quantum computation. In the first part of this thesis, we develop a new method based on the generating function of a sequence, which gives rise to an elegant description of intrinsically non-Gaussian objects. Building on the generating function of the matrix elements of Gaussian unitaries in Fock basis, our approach gives access to the multi-photon transition probabilities via unexpectedly simple recurrence equations. The method is developed for Gaussian unitaries effecting both passive and active linear coupling between two bosonic modes. It predicts an interferometric suppression term which generalises the Hong-Ou-Mandel effect for more than two indistinguishable photons impinging on a balanced beam splitter. Furthermore, it exhibits an unsuspected 2-photon suppression effect in optical parametric amplification of gain 2, which originates from the indistinguishability between the input and output photon pairs. Finally, we extend our method to Bogoliubov transformations acting on an arbitrary number of modes. In the second part of this thesis, we introduce a class of Gaussian-dilatable bosonic quantum channels (characterised by a Gaussian unitary in their Stinespring dilation) called passive-envir<br />Le formalisme symplectique appliqué à la représentation des systèmes bosoniques dans l'espace des phases donne accès à un outil mathématique puissant pour la caractérisation des états gau-ssiens et transformations gaussiennes. Les protocoles d'information quantique impliquant ces derniers sont d'ailleurs très bien compris d'un point de vue théorique. Toutefois, il s'est avéré clair durant ces dernières années que l'utilisation de ressources non-gaussiennes est nécessaire afin d'effectuer des tâches cruciales de traitement de l'information. En effet, certaines tâches — telles que la distillation d’intrication quantique, le codage quantique ou encore le calcul quantique — impliquant des états gaussiens ne peuvent être effectuées avec des transformations gaussiennes. Dans la première partie de cette thèse, nous développons une nouvelle méthode basée sur la fonction génératrice d'une suite qui donne lieu à une description élégante d'objets intrinsèquement non-gaussiens. Se basant sur la fonction génératrice des éléments de matrice d'unitaires gaussiens dans la base de Fock, notre approche donne accès aux probabilités de transition multi-photon via des équations de récurrence étonnamment simples. La méthode est développée pour des unitaires gaussiens produisant des couplages linéaires passifs et actifs entres deux modes bosoniques. Elle prédit un terme d'interférence destructive qui généralise l'effet Hong-Ou-Mandel pour plus de deux photons indistinguables pénétrant dans un diviseur de faisceau équilibré. De plus, elle met en évidence un effet inattendu de suppression de deux photons dans un amplificateur paramétrique optique de gain 2. Cette suppression résulte de l’indistinguabilité entre les paires de photons d’entrée et de sortie. Finalement, nous étendons notre méthode à des transformations de Bogoliubov agissant sur un nombre de modes arbitraire. Dans la seconde partie de cette thèse, nous introduisons une classe de canaux quantiques bosoniques gaussiens-dilatable<br />Doctorat en Sciences de l'ingénieur et technologie<br />info:eu-repo/semantics/nonPublished
Details
- Database :
- OAIster
- Notes :
- 248 p., 3 full-text file(s): application/pdf | application/pdf | application/pdf, English
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1090522050
- Document Type :
- Electronic Resource