Back to Search Start Over

A coordinated X-ray and Optical Campaign of the Nearest Massive Eclipsing Binary, $\delta$ Orionis Aa: IV. A multiwavelength, non-LTE spectroscopic analysis

Authors :
Shenar, T.
Oskinova, L.
Hamann, W. -R.
Corcoran, M. F.
Moffat, A. F. J.
Pablo, H.
Richardson, N. D.
Waldron, W. L.
Huenemoerder, D. P.
Apellániz, J. Maíz
Nichols, J. S.
Todt, H.
Nazé, Y.
Hoffman, J. L.
Pollock, A. M. T.
Negueruela, I.
Shenar, T.
Oskinova, L.
Hamann, W. -R.
Corcoran, M. F.
Moffat, A. F. J.
Pablo, H.
Richardson, N. D.
Waldron, W. L.
Huenemoerder, D. P.
Apellániz, J. Maíz
Nichols, J. S.
Todt, H.
Nazé, Y.
Hoffman, J. L.
Pollock, A. M. T.
Negueruela, I.
Publication Year :
2015

Abstract

Eclipsing systems of massive stars allow one to explore the properties of their components in great detail. We perform a multi-wavelength, non-LTE analysis of the three components of the massive multiple system $\delta$ Ori A, focusing on the fundamental stellar properties, stellar winds, and X-ray characteristics of the system. The primary's distance-independent parameters turn out to be characteristic for its spectral type (O9.5 II), but usage of the ${\rm \it Hipparcos}$ parallax yields surprisingly low values for the mass, radius, and luminosity. Consistent values follow only if $\delta$ Ori lies at about twice the ${\rm \it Hipparcos}$ distance, in the vicinity of the $\sigma$-Orionis cluster. The primary and tertiary dominate the spectrum and leave the secondary only marginally detectable. We estimate the V-band magnitude difference between primary and secondary to be $\Delta V \approx 2.\!\!^{\rm m}8$. The inferred parameters suggest the secondary is an early B-type dwarf ($\approx$ B1 V), while the tertiary is an early B-type subgiant ($\approx$ B0 IV). We find evidence for rapid turbulent velocities ($\sim 200$ km ${\rm s}^{-1}$) and wind inhomogeneities, partially optically thick, in the primary's wind. The bulk of the X-ray emission likely emerges from the primary's stellar wind ($\log L_{\text{X}} / L_{\text{Bol}} \approx -6.85$), initiating close to the stellar surface at $R_0 \sim 1.1\,R_*$. Accounting for clumping, the mass-loss rate of the primary is found to be $\log \dot{M} \approx -6.4\,[M_\odot\,{\rm yr}^{-1}]$, which agrees with hydrodynamic predictions, and provides a consistent picture along the X-ray, UV, optical and radio spectral domains.<br />Comment: Accepted for Publication in APJ, 21 pages, 16 figures and 2 tables

Details

Database :
OAIster
Publication Type :
Electronic Resource
Accession number :
edsoai.on1098086225
Document Type :
Electronic Resource
Full Text :
https://doi.org/10.1088.0004-637X.809.2.135