Back to Search Start Over

Bounds for the Nakamura number

Authors :
Universitat Politècnica de Catalunya. Departament de Matemàtiques
Universitat Politècnica de Catalunya. GRTJ - Grup de Recerca en Teoria de Jocs
Freixas Bosch, Josep
Kurz, Sascha
Universitat Politècnica de Catalunya. Departament de Matemàtiques
Universitat Politècnica de Catalunya. GRTJ - Grup de Recerca en Teoria de Jocs
Freixas Bosch, Josep
Kurz, Sascha
Publication Year :
2019

Abstract

This is a post-peer-review, pre-copyedit version of an article published in Social choice and welfare. The final authenticated version is available online at: http://dx.doi.org/10.1007/s00355-018-1164-y.<br />The Nakamura number is an appropriate invariant of a simple game to study the existence of social equilibria and the possibility of cycles. For symmetric (quota) games its number can be obtained by an easy formula. For some subclasses of simple games the corresponding Nakamura number has also been characterized. However, in general, not much is known about lower and upper bounds depending on invariants of simple, complete or weighted games. Here, we survey such results and highlight connections with other game theoretic concepts. © 2018, Springer-Verlag GmbH Germany, part of Springer Nature.<br />Peer Reviewed<br />Postprint (author's final draft)

Details

Database :
OAIster
Notes :
28 p., application/pdf, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1102396473
Document Type :
Electronic Resource