Back to Search
Start Over
A clinical prediction model for hospitalized COPD exacerbations based on “treatable traits&rdquo
- Publication Year :
- 2019
-
Abstract
- Anthony CA Yii,1 CH Loh,1 PY Tiew,2,3 Huiying Xu,4 Aza AM Taha,1 Jansen Koh,1 Jessica Tan,5 Therese S Lapperre,6,7 Antonio Anzueto,8 Augustine KH Tee1 1Department of Respiratory and Critical Care Medicine, Changi General Hospital, Singapore; 2Department of Respiratory and Critical Care Medicine, Singapore General Hospital, Singapore; 3Translational Respiratory Research Laboratory, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; 4Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore; 5Department of General Medicine, Sengkang General Hospital, Singapore; 6Department of Respiratory Medicine, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark; 7Duke-National University of Singapore Medical School, Singapore; 8Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine, UT Health Science Center, San Antonio, TX, USA Background: Assessing risk of future exacerbations is an important component in COPD management. History of exacerbation is a strong and independent predictor of future exacerbations, and the criterion of ≥2 nonhospitalized or ≥1 hospitalized exacerbation is often used to identify high-risk patients in whom therapy should be intensified. However, other factors or “treatable traits” also contribute to risk of exacerbation.Objective: The objective of the study was to develop and externally validate a novel clinical prediction model for risk of hospitalized COPD exacerbations based on both exacerbation history and treatable traits.Patients and methods: A total of 237 patients from the COPD Registry of Changi General Hospital, Singapore, aged 75±9 years and with mean post-bronchodilator FEV1 60%±20% predicted, formed the derivation cohort. Hospitalized exacerbation rate was modeled using zero-inflated negative binomial regression. Calibration was assessed by graphically comparing the agreement between predicted an
Details
- Database :
- OAIster
- Notes :
- text/html, English
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1102489771
- Document Type :
- Electronic Resource