Back to Search Start Over

Diversity of Chemical Mechanisms in Thioredoxin Catalysis Revealed by Single-Molecule Force Spectroscopy

Authors :
Pérez-Jiménez, Raúl
Li, Jingyuan
Kosuri, Pallav
Sánchez-Romero, Inmaculada
Wiita, Arun P.
Rodríguez-Larrea, David
Chueca, Ana
Holmgren, Arne
Miranda-Vizuete, Antonio
Becker, Katja
Cho, Seung-Hyun
Beckwith, Jon
Gelhaye, Eric
Jacquot, Jean P.
Gaucher, Eric
Sánchez-Ruiz, José M.
Berne, Bruce J.
Fernández, Julio M.
Pérez-Jiménez, Raúl
Li, Jingyuan
Kosuri, Pallav
Sánchez-Romero, Inmaculada
Wiita, Arun P.
Rodríguez-Larrea, David
Chueca, Ana
Holmgren, Arne
Miranda-Vizuete, Antonio
Becker, Katja
Cho, Seung-Hyun
Beckwith, Jon
Gelhaye, Eric
Jacquot, Jean P.
Gaucher, Eric
Sánchez-Ruiz, José M.
Berne, Bruce J.
Fernández, Julio M.
Publication Year :
2009

Abstract

Thioredoxins (Trxs) are oxidoreductase enzymes, present in all organisms, that catalyze the reduction of disulfide bonds in proteins. By applying a calibrated force to a substrate disulfide, the chemical mechanisms of Trx catalysis can be examined in detail at the single-molecule level. Here we use single-molecule force-clamp spectroscopy to explore the chemical evolution of Trx catalysis by probing the chemistry of eight different Trx enzymes. All Trxs show a characteristic Michaelis-Menten mechanism that is detected when the disulfide bond is stretched at low forces, but at high forces, two different chemical behaviors distinguish bacterial-origin from eukaryotic-origin Trxs. Eukaryotic-origin Trxs reduce disulfide bonds through a single-electron transfer reaction (SET), whereas bacterial-origin Trxs show both nucleophilic substitution (SN2) and SET reactions. A computational analysis of Trx structures identifies the evolution of the binding groove as an important factor controlling the chemistry of Trx catalysis.

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1103378951
Document Type :
Electronic Resource