Back to Search
Start Over
Improved chemometric methodologies for the assessment of soil carbon sequestration mechanisms
- Publication Year :
- 2016
-
Abstract
- The factors involved soil C sequestration, which is reflected in the highly variable content of organic matter in the soils, are not yet well defined. Therefore, their identification is crucial for understanding Earth’s biogeochemical cycle and global change. The main objective of this work is to contribute to a better qualitative and quantitative assessment of the mechanisms of organic C sequestration in the soil, using omic approaches not requiring the detailed knowledge of the structure of the material under study. With this purpose, we have carried out a series of chemometric approaches on a set of widely differing soils (35 representative ecosystems). In an exploratory phase, we used multivariate statistical models (e.g., multidimensional scaling, discriminant analysis with automatic backward variable selection. . . ) to analyze arrays of more than 200 independent soil variables (physicochemical, spectroscopic, pyrolytic...) in order to select those factors (descriptors or proxies) that explain most of the total system variance (content and stability of the different C forms). These models showed that the factors determining the stabilization of organic material are greatly dependent on the soil type. In some cases, the molecular structure of organic matter seemed strongly correlated with their resilience, while in other soil types the organo-mineral interactions played a significant bearing on the accumulation of selectively preserved C forms. In any case, it was clear that the factors driving the resilience of organic matter are manifold and not exclusive. Consequently, in a second stage, prediction models of the soil C content and their biodegradability (laboratory incubation experiments) were carried out by massive data processing by partial least squares (PLS) regression of data from Py-GC-MS and Py-MS. In some models, PLS was applied to a matrix of 150 independent variables corresponding to major pyrolysis compounds (peak areas) from the 35 samples of who
Details
- Database :
- OAIster
- Notes :
- English
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1103434314
- Document Type :
- Electronic Resource