Back to Search Start Over

Sparse Principal Component Analysis via Variable Projection

Authors :
Erichson, N. Benjamin
Zheng, Peng
Manohar, Krithika
Brunton, Steven L.
Kutz, J. Nathan
Aravkin, Aleksandr Y.
Erichson, N. Benjamin
Zheng, Peng
Manohar, Krithika
Brunton, Steven L.
Kutz, J. Nathan
Aravkin, Aleksandr Y.
Publication Year :
2018

Abstract

Sparse principal component analysis (SPCA) has emerged as a powerful technique for modern data analysis, providing improved interpretation of low-rank structures by identifying localized spatial structures in the data and disambiguating between distinct time scales. We demonstrate a robust and scalable SPCA algorithm by formulating it as a value-function optimization problem. This viewpoint leads to a flexible and computationally efficient algorithm. Further, we can leverage randomized methods from linear algebra to extend the approach to the large-scale (big data) setting. Our proposed innovation also allows for a robust SPCA formulation which obtains meaningful sparse principal components in spite of grossly corrupted input data. The proposed algorithms are demonstrated using both synthetic and real world data, and show exceptional computational efficiency and diagnostic performance.

Details

Database :
OAIster
Publication Type :
Electronic Resource
Accession number :
edsoai.on1106293896
Document Type :
Electronic Resource
Full Text :
https://doi.org/10.1137.18M1211350