Back to Search Start Over

Effects of Thermal Reflowing Stress on Mechanical Properties of Novel SMT-SREKs

Authors :
Cai, Miao (author)
Liang, Yonghu (author)
Yun, Minghui (author)
Chen, Xuan-You (author)
Yan, Haidong (author)
Yu, Zhaozhe (author)
Yang, Daoguo (author)
Zhang, Kouchi (author)
Cai, Miao (author)
Liang, Yonghu (author)
Yun, Minghui (author)
Chen, Xuan-You (author)
Yan, Haidong (author)
Yu, Zhaozhe (author)
Yang, Daoguo (author)
Zhang, Kouchi (author)
Publication Year :
2019

Abstract

A novel silicone rubber elastic key (SREK) is proposed in this paper for surface mounting technology (SMT) applications. Effects of thermal reflowing stress on the mechanical properties of SMT-SREKs are investigated. The manufactured SMT-SREKs, which underwent various reflowing conditions in advance, are subjected to pressing force and fatigue pressing tests. Fatigue lifetime projection model and its predicted error are then assessed systematically. The thermal degradation of silicone rubber materials is illustrated through the dynamic mechanical analysis and the Fourier transform infrared spectroscopy experiments. The mechanical finite element modeling is also conducted to simulate the pressing process. The results show that the pressing force and tactility of the SMT-SREKs are strongly affected by the reflowing condition, which contributes to the degradation of the silicone rubber materials. During the fatigue pressing test, the change rate of tactility increases with the reflowing peak temperature ( T-{p} ) and is accelerated by the repeated reflowing process. Moreover, a linear model can precisely project the tactility before the fatigue pressing number of 2.0E+6 times, and the impact rate of T-{p} on tactility with the increasing fatigue pressing number can be predicted effectively by using a logarithm model.<br />Electronic Components, Technology and Materials

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1111913811
Document Type :
Electronic Resource
Full Text :
https://doi.org/10.1109.ACCESS.2019.2900361