Back to Search
Start Over
Effects of Platelet-Activating Factor on Brain Microvascular Endothelial Cells.
- Source :
- College of Pharmacy Faculty Papers
- Publication Year :
- 2018
-
Abstract
- Platelet-activating factor (PAF) is a potent phospholipid mediator that exerts various pathophysiological effects by interacting with a G protein-coupled receptor. PAF has been reported to increase the permeability of the blood-brain barrier (BBB) via incompletely characterized mechanisms. We investigated the effect of PAF on rat brain microvascular endothelial cells (RBMVEC), a critical component of the BBB. PAF produced a dose-dependent increase in cytosolic Ca2+ concentration; the effect was prevented by the PAF receptor antagonist, WEB2086. The effect of PAF on cytosolic Ca2+ was abolished in Ca2+-free saline or in the presence of L-type voltage-gated Ca2+ channel inhibitor, nifedipine, indicating that Ca2+ influx is critical for PAF-induced increase in cytosolic Ca2+. PAF produced RBMVEC depolarization; the effect was inhibited by WEB2086. In cells loaded with [(4-amino-5-methylamino-2',7'-difluoro-fluorescein)diacetate] (DAF-FM), a nitric oxide (NO)-sensitive fluorescent dye, PAF increased the NO level; the effect was prevented by WEB2086, nifedipine or by l-NAME, an inhibitor of NO synthase. Immunocytochemistry studies indicate that PAF reduced the immunostaining of ZO-1, a tight junction-associated protein, increased F-actin fibers, and produced intercellular gaps. PAF produced a decrease in RBMVEC monolayer electrical resistance assessed with Electric Cell-Substrate Impedance Sensing (ECIS), indicative of a disruption of endothelial barrier function. In vivo studies indicate that PAF increased the BBB permeability, assessed with sodium fluorescein and Evans Blue methods, via PAF receptor-dependent mechanisms, consequent to Ca2+ influx and increased NO levels. Our studies reveal that PAF alters the BBB permeability by multiple mechanisms, which may be relevant for central nervous system (CNS) inflammatory disorders.
Details
- Database :
- OAIster
- Journal :
- College of Pharmacy Faculty Papers
- Notes :
- application/pdf, English
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1112611362
- Document Type :
- Electronic Resource