Back to Search
Start Over
Super-Resolution Channel Estimation for Arbitrary Arrays in Hybrid Millimeter-Wave Massive MIMO Systems
- Publication Year :
- 2019
-
Abstract
- This paper develops efficient channel estimation techniques for millimeter-wave (mmWave) massive multiple-input multiple-output (MIMO) systems under practical hardware limitations, including an arbitrary array geometry and a hybrid hardware structure. Taking on an angle-based approach, this work adopts a generalized array manifold separation approach via Jacobi-Anger approximation, which transforms a non-ideal, non-uniform array manifold into a virtual array domain with a desired uniform geometric structure to facilitate super-resolution angle estimation and channel acquisition. Accordingly, structure-based optimization techniques are developed to effectively estimate both the channel covariance and the instantaneous channel state information (CSI) within a short sensing time. The different time-varying scales of channel path angles versus path gains are capitalized to design a two-step CSI estimation scheme that can quickly sense fading channels. Theoretical results are provided on the fundamental limits of the proposed technique in terms of sample efficiency. For computational efficiency, a fast iterative algorithm is developed via the alternating direction method of multipliers. Other related issues such as spurious-peak cancellation in non-uniform linear arrays and extensions to higher-dimensional cases are also discussed. Simulations testify the effectiveness of the proposed approaches in hybrid mmWave massive MIMO systems with arbitrary arrays.<br />Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.<br />Circuits and Systems
Details
- Database :
- OAIster
- Notes :
- English
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1130225115
- Document Type :
- Electronic Resource
- Full Text :
- https://doi.org/10.1109.JSTSP.2019.2937632