Back to Search Start Over

H2O2 Production at Low Overpotentials for Electroenzymatic Halogenation Reactions

Authors :
Bormann, Sebastian (author)
van Schie, M.M.C.H. (author)
Pedroso de Almeida, T. (author)
Zhang, W. (author)
Stöckl, Markus (author)
Ulber, Roland (author)
Hollmann, F. (author)
Holtmann, Dirk (author)
Bormann, Sebastian (author)
van Schie, M.M.C.H. (author)
Pedroso de Almeida, T. (author)
Zhang, W. (author)
Stöckl, Markus (author)
Ulber, Roland (author)
Hollmann, F. (author)
Holtmann, Dirk (author)
Publication Year :
2019

Abstract

Various enzymes utilize hydrogen peroxide as an oxidant. Such “peroxizymes” are potentially very attractive catalysts for a broad range of oxidation reactions. Most peroxizymes, however, are inactivated by an excess of H2O2. The electrochemical reduction of oxygen can be used as an in situ generation method for hydrogen peroxide to drive the peroxizymes at high operational stabilities. Using conventional electrode materials, however, also necessitates significant overpotentials, thereby reducing the energy efficiency of these systems. This study concerns a method to coat a gas-diffusion electrode with oxidized carbon nanotubes (oCNTs), thereby greatly reducing the overpotential needed to perform an electroenzymatic halogenation reaction. In comparison to the unmodified electrode, with the oCNTs-modified electrode the overpotential can be reduced by approximately 100 mV at comparable product formation rates.<br />BT/Biocatalysis

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1130225209
Document Type :
Electronic Resource
Full Text :
https://doi.org/10.1002.cssc.201902326