Back to Search Start Over

Large-sample tests of extreme-value dependence for multivariate copulas

Authors :
UCL - SSH/IMMAQ/ISBA - Institut de Statistique, Biostatistique et Sciences Actuarielles
Université de Pau et des Pays de l’Adour, Pau, France - Laboratoire de Mathématiques et Applications
University of Connecticut, USA - Department of Statistics
Kojadinovic, Ivan
Segers, Johan
Yan, Jun
UCL - SSH/IMMAQ/ISBA - Institut de Statistique, Biostatistique et Sciences Actuarielles
Université de Pau et des Pays de l’Adour, Pau, France - Laboratoire de Mathématiques et Applications
University of Connecticut, USA - Department of Statistics
Kojadinovic, Ivan
Segers, Johan
Yan, Jun
Source :
Canadian Journal of Statistics, Vol. 39, no. 4, p. 703-720 (2011)
Publication Year :
2011

Abstract

Starting from the characterization of extreme-value copulas based on max-stability, large-sample tests of extreme-value dependence for multivariate copulas are studied. The two key ingredients of the proposed tests are the empirical copula of the data and a multiplier technique for obtaining approximate p-values for the derived statistics. The asymptotic validity of the multiplier approach is established, and the finite-sample performance of a large number of candidate test statistics is studied through extensive Monte Carlo experiments for data sets of dimension two to five. In the bivariate case, the rejection rates of the best versions of the tests are compared with those of the test of Ghoudi et al. (1998) recently revisited by Ben Ghorbal et al. (2009). The proposed procedures are illustrated on bivariate financial data and trivariate geological data.

Details

Database :
OAIster
Journal :
Canadian Journal of Statistics, Vol. 39, no. 4, p. 703-720 (2011)
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1130523059
Document Type :
Electronic Resource