Back to Search Start Over

A novel trigger-based method for hydrothermal vents prospecting using an autonomous underwater robot

Authors :
Ferri, Gabriele
Jakuba, Michael V.
Yoerger, Dana R.
Ferri, Gabriele
Jakuba, Michael V.
Yoerger, Dana R.
Publication Year :
2010

Abstract

Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Autonomous Robots 29 (2010): 67-83, doi:10.1007/s10514-010-9187-y.<br />In this paper we address the problem of localizing active hydrothermal vents on the seafloor using an Autonomous Underwater Vehicle (AUV). The plumes emitted by hydrothermal vents are the result of thermal and chemical inputs from submarine hot spring systems into the overlying ocean. The Woods Hole Oceanographic Institution's Autonomous Benthic Explorer (ABE) AUV has successfully localized previously undiscovered hydrothermal vent fields in several recent vent prospecting expeditions. These expeditions utilized the AUV for a three-stage, nested survey strategy approach (German et al., 2008). Each stage consists of a survey flown at successively deeper depths through easier to detect but spatially more constrained vent fluids. Ideally this sequence of surveys culminates in photographic evidence of the vent fields themselves. In this work we introduce a new adaptive strategy for an AUV's movement during the first, highest-altitude survey: the AUV initially moves along pre-designed tracklines but certain conditions can trigger an adaptive movement that is likely to acquire additional high value data for vent localization. The trigger threshold is changed during the mission, adapting the method to the different survey profiles the robot may find. The proposed algorithm is vetted on data from previous ABE missions and measures of efficiency presented.

Details

Database :
OAIster
Notes :
application/pdf, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1130865455
Document Type :
Electronic Resource