Back to Search Start Over

A contact domain method for large deformation frictional contact problems. Part 1: Theoretical basis

Authors :
Universitat Politècnica de Catalunya. Departament de Resistència de Materials i Estructures a l'Enginyeria
Universitat Politècnica de Catalunya. LITEM - Laboratori per a la Innovació Tecnològica d'Estructures i Materials
Universitat Politècnica de Catalunya. (MC)2 - Grup de Mecànica Computacional en Medis Continus
Oliver Olivella, Xavier
Hartmann, S
Cante Terán, Juan Carlos
Weyler Pérez, Rafael
Hernández Ortega, Joaquín Alberto
Universitat Politècnica de Catalunya. Departament de Resistència de Materials i Estructures a l'Enginyeria
Universitat Politècnica de Catalunya. LITEM - Laboratori per a la Innovació Tecnològica d'Estructures i Materials
Universitat Politècnica de Catalunya. (MC)2 - Grup de Mecànica Computacional en Medis Continus
Oliver Olivella, Xavier
Hartmann, S
Cante Terán, Juan Carlos
Weyler Pérez, Rafael
Hernández Ortega, Joaquín Alberto
Publication Year :
2009

Abstract

Continua a l'article "A contact domain method for large deformation frictional contact problems. Part 2: Numerical aspects" publicat a la revista "Computer methods in applied mechanics and engineering", 2009, vol. 198, p. 2607-2631.<br />In the first part of this work, the theoretical basis of a frictional contact domain method for two-dimensional large deformation problems is presented. Most of the existing contact formulations impose the contact constraints on the boundary of one of the contacting bodies, which necessitates the projection of certain quantities from one contacting surface onto the other. In this work, the contact constraints are formulated on a so-called contact domain, which has the same dimension as the contacting bodies. This contact domain can be interpreted as a fictive intermediate region connecting the potential contact surfaces of the deformable bodies. The introduced contact domain is subdivided into a non-overlapping set of patches and is endowed with a displacement field, interpolated from the displacements at the contact surfaces. This leads to a contact formulation that is based on dimensionless, strain-like measures for the normal and tangential gaps and that exactly passes the contact patch test. In addition, the contact constraints are enforced using a stabilized Lagrange multiplier formulation based on an interior penalty method (Nitsche method). This allows the condensation of the introduced Lagrange multipliers and leads to a purely displacement driven problem. An active set strategy, based on the concept of effective gaps as entities suitable for smooth extrapolation, is used for determining the active normal stick and slip patches of the contact domain.<br />Peer Reviewed<br />Postprint (published version)

Details

Database :
OAIster
Notes :
16 p., application/pdf, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1132949335
Document Type :
Electronic Resource