Back to Search Start Over

A deep learning framework for neuroscience

Authors :
Richards, Blake A
Lillicrap, Timothy P
Beaudoin, Philippe
Bengio, Yoshua
Bogacz, Rafal
Christensen, Amelia
Clopath, Claudia
Costa, Rui Ponte
de Berker, Archy
Ganguli, Surya
Gillon, Colleen J
Hafner, Danijar
Kepecs, Adam
Kriegeskorte, Nikolaus
Latham, Peter
Lindsay, Grace W
Miller, Kenneth D
Naud, Richard
Pack, Christopher C
Poirazi, Panayiota
Roelfsema, Pieter
Sacramento, João
Saxe, Andrew
Scellier, Benjamin
Schapiro, Anna C
Senn, Walter
Wayne, Greg
Yamins, Daniel
Zenke, Friedemann
Zylberberg, Joel
Therien, Denis
Kording, Konrad P
Richards, Blake A
Lillicrap, Timothy P
Beaudoin, Philippe
Bengio, Yoshua
Bogacz, Rafal
Christensen, Amelia
Clopath, Claudia
Costa, Rui Ponte
de Berker, Archy
Ganguli, Surya
Gillon, Colleen J
Hafner, Danijar
Kepecs, Adam
Kriegeskorte, Nikolaus
Latham, Peter
Lindsay, Grace W
Miller, Kenneth D
Naud, Richard
Pack, Christopher C
Poirazi, Panayiota
Roelfsema, Pieter
Sacramento, João
Saxe, Andrew
Scellier, Benjamin
Schapiro, Anna C
Senn, Walter
Wayne, Greg
Yamins, Daniel
Zenke, Friedemann
Zylberberg, Joel
Therien, Denis
Kording, Konrad P
Source :
Nature Neuroscience vol.22 (2019) nr.11 p.1761-1770 [ISSN 1097-6256]
Publication Year :
2019

Abstract

Systems neuroscience seeks explanations for how the brain implements a wide variety of perceptual, cognitive and motor tasks. Conversely, artificial intelligence attempts to design computational systems based on the tasks they will have to solve. In artificial neural networks, the three components specified by design are the objective functions, the learning rules and the architectures. With the growing success of deep learning, which utilizes brain-inspired architectures, these three designed components have increasingly become central to how we model, engineer and optimize complex artificial learning systems. Here we argue that a greater focus on these components would also benefit systems neuroscience. We give examples of how this optimization-based framework can drive theoretical and experimental progress in neuroscience. We contend that this principled perspective on systems neuroscience will help to generate more rapid progress.

Details

Database :
OAIster
Journal :
Nature Neuroscience vol.22 (2019) nr.11 p.1761-1770 [ISSN 1097-6256]
Notes :
DOI: 10.1038/s41593-019-0520-2, Nature Neuroscience vol.22 (2019) nr.11 p.1761-1770 [ISSN 1097-6256], English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1134931483
Document Type :
Electronic Resource