Back to Search Start Over

Assembly of cytochrome c oxidase: the role of hSco1p and hSco2p

Authors :
Rödel, Gerhard
Göttfert, Michael
Jaksch, Michaela
Paret, Claudia
Rödel, Gerhard
Göttfert, Michael
Jaksch, Michaela
Paret, Claudia
Publication Year :
2001

Abstract

COX deficiency in human presents a plethora of phenotypes which is not surprising given the complexity of the enzyme structure and the multiple factors and many steps required for its assembly. A functional COX requires three mitochondrially encoded subunits (Cox1p, Cox2p and Cox3p), at least 10 nuclearly encoded subunits, some of which are tissue specific, and a yet unknown number of assembly factors. Mutations in four of these factors, hSco1p, hSco2p, hCox10p and hSurf1p, have been associated with lethal COX deficiency in patients. Sco proteins, conserved from prokaryotes to eukaryotes, are probably involved in the insertion of copper in COX. The role of hSco1p and hSco2p in this process was investigated in this work. Moreover the importance of some hSco mutations found in patients was analysed. Both in vitro and in vivo analyses show that the hSco proteins are localised in the mitochondria. Both proteins are per se unable to substitute for ySco1p. However, a chimeric construct consisting of the N-terminal portion, the TM and a part of the C-terminal portion of ySco1p and the remaining C-terminal part derived from hSco1p was able to complement a ysco1 null mutant strain. This construct was used to define the role of a point mutation (P174L) found in the hSCO1 gene of infants suffering from ketoacidotic coma. These mutation was shown to affect the COX activity and the levels of Cox1p and Cox2p. The fact that copper was able to suppress this mutation, strongly outlined the importance of Sco proteins in the copper insertion in COX. The C-terminal portions of recombinant hSco1p and hSco2p were purified from E. coli by affinity chromatography. The purified proteins were subjected to atomic emission and absorption analyses and were shown to specifically bind copper. A stoichiometry of 1:1 for hSco2p and of 0,6:1 for hSco1p was determined. To identify the Aa residues involved in copper binding, in vitro mutagenesis was performed. hSco1p and hSco2p, lacking the cysteines

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1135774652
Document Type :
Electronic Resource