Back to Search Start Over

Data science: technologies for better software

Authors :
Universitat Politècnica de Catalunya. Departament d'Enginyeria de Serveis i Sistemes d'Informació
Universitat Politècnica de Catalunya. inSSIDE - integrated Software, Service, Information and Data Engineering
Ebert, Christof
Heidrich, Jens
Martínez Fernández, Silverio Juan
Trendowicz, Adam
Universitat Politècnica de Catalunya. Departament d'Enginyeria de Serveis i Sistemes d'Informació
Universitat Politècnica de Catalunya. inSSIDE - integrated Software, Service, Information and Data Engineering
Ebert, Christof
Heidrich, Jens
Martínez Fernández, Silverio Juan
Trendowicz, Adam
Publication Year :
2019

Abstract

Data science is mandatory in today's business to capitalize on achievements and assets. This specifically holds for modern software development, where data science facilitates analyzing product, process, and usage and thus managing evolution and performance. With the convergence of embedded and IT domains, such as the Internet of Things (IoT) and automotive systems, software systems are becoming more complex. Complexity has two faces. On one hand it means more functionality and fluid delivery models, thus offering markets more value, such as the ability to deliver a single-customer focus. Complexity, however, also means the growth of technical debt, which slows productivity and lowers quality. As software engineering generates ever larger and more varied data sets, such as feature usage, code analysis, test coverage, error logs, and maintenance data, companies face the challenge of unlocking the value of that data.<br />Peer Reviewed<br />Postprint (author's final draft)

Details

Database :
OAIster
Notes :
7 p., application/pdf, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1141700970
Document Type :
Electronic Resource