Back to Search Start Over

Simulation technique for slurries interacting with moving parts and deformable solids with applications

Authors :
Massachusetts Institute of Technology. Department of Mechanical Engineering
MIT Energy Initiative
Mutabaruka, Patrick
Kamrin, Kenneth N
Massachusetts Institute of Technology. Department of Mechanical Engineering
MIT Energy Initiative
Mutabaruka, Patrick
Kamrin, Kenneth N
Source :
Springer International Publishing
Publication Year :
2018

Abstract

A numerical method for particle-laden fluids interacting with a deformable solid domain and mobile rigid parts is proposed and implemented in a full engineering system. The fluid domain is modeled with a lattice Boltzmann representation, the particles and rigid parts are modeled with a discrete element representation, and the deformable solid domain is modeled using a Lagrangian mesh. The main issue of this work, since separately each of these methods is a mature tool, is to develop coupling and model-reduction approaches in order to efficiently simulate coupled problems of this nature, as in various geological and engineering applications. The lattice Boltzmann method incorporates a large eddy simulation technique using the Smagorinsky turbulence model. The discrete element method incorporates spherical and polyhedral particles for stiff contact interactions. A neo-Hookean hyperelastic model is used for the deformable solid. We provide a detailed description of how to couple the three solvers within a unified algorithm. The technique we propose for rubber modeling/coupling exploits a simplification that prevents having to solve a finite-element problem at each time step. We also developed a technique to reduce the domain size of the full system by replacing certain zones with quasi-analytic solutions, which act as effective boundary conditions for the lattice Boltzmann method. The major ingredients of the routine are separately validated. To demonstrate the coupled method in full, we simulate slurry flows in two kinds of piston valve geometries. The dynamics of the valve and slurry are studied and reported over a large range of input parameters. Keywords Discrete elements method Lattice Boltzmann Fluid–particle interaction Smagorinsky turbulence model Hyperelastic model Neo-Hookean elastic rubber model<br />United States. Army Research Office (grant W911 NF-15-1-0598)<br />Schlumberger Limited

Details

Database :
OAIster
Journal :
Springer International Publishing
Notes :
application/pdf, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1141888732
Document Type :
Electronic Resource