Back to Search Start Over

Nanoparticle-assisted optical tethering of endosomes reveals the cooperative function of dyneins in retrograde axonal transport

Authors :
Massachusetts Institute of Technology. Department of Chemistry
Chen, Ou
Bawendi, Moungi G.
Chowdary, Praveen D.
Che, Daphne L.
Kaplan, Luke
Pu, Kanyi
Cui, Bianxiao
Massachusetts Institute of Technology. Department of Chemistry
Chen, Ou
Bawendi, Moungi G.
Chowdary, Praveen D.
Che, Daphne L.
Kaplan, Luke
Pu, Kanyi
Cui, Bianxiao
Source :
Nature Publishing Group
Publication Year :
2016

Abstract

Dynein-dependent transport of organelles from the axon terminals to the cell bodies is essential to the survival and function of neurons. However, quantitative knowledge of dyneins on axonal organelles and their collective function during this long-distance transport is lacking because current technologies to do such measurements are not applicable to neurons. Here, we report a new method termed nanoparticle-assisted optical tethering of endosomes (NOTE) that made it possible to study the cooperative mechanics of dyneins on retrograde axonal endosomes in live neurons. In this method, the opposing force from an elastic tether causes the endosomes to gradually stall under load and detach with a recoil velocity proportional to the dynein forces. These recoil velocities reveal that the axonal endosomes, despite their small size, can recruit up to 7 dyneins that function as independent mechanical units stochastically sharing load, which is vital for robust retrograde axonal transport. This study shows that NOTE, which relies on controlled generation of reactive oxygen species, is a viable method to manipulate small cellular cargos that are beyond the reach of current technology.<br />National Institutes of Health (U.S.) (DP2-NS082125)<br />National Science Foundation (U.S.) (Award 1055112)<br />National Science Foundation (U.S.) (Award 1344302)

Details

Database :
OAIster
Journal :
Nature Publishing Group
Notes :
application/pdf, en_US
Publication Type :
Electronic Resource
Accession number :
edsoai.on1141890561
Document Type :
Electronic Resource