Back to Search Start Over

Snow cover manipulation effects on microbial community structure and soil chemistry in a mountain bog

Authors :
Robroek, Bjorn
Heijboer, Amber
Jassey, Vincent
Hefting, Mariet
Rouwenhorst, T.
Buttler, Alexandre
Bragazza, Luca
Robroek, Bjorn
Heijboer, Amber
Jassey, Vincent
Hefting, Mariet
Rouwenhorst, T.
Buttler, Alexandre
Bragazza, Luca
Publication Year :
2018

Abstract

Background and Aims: Alterations in snow cover driven by climate change may impact ecosystem functioning, including biogeochemistry and soil (microbial) processes. We elucidated the effects of snow cover manipulation (SCM) on above-and belowground processes in a temperate peatland. Methods: In a Swiss mountain-peatland we manipulated snow cover (addition, removal and control), and assessed the effects on Andromeda polifolia root enzyme activity, soil microbial community structure, and leaf tissue and soil biogeochemistry. Results: Reduced snow cover produced warmer soils in our experiment while increased snow cover kept soil temperatures close-to-freezing. SCM had a major influence on the microbial community, and prolonged ‘close-to-freezing' temperatures caused a shift in microbial communities toward fungal dominance. Soil temperature largely explained soil microbial structure, while other descriptors such as root enzyme activity and pore-water chemistry interacted less with the soil microbial communities. Conclusions: We envisage that SCM-driven changes in the microbial community composition could lead to substantial changes in trophic fluxes and associated ecosystem processes. Hence, we need to improve our understanding on the impact of frost and freeze-thaw cycles on the microbial food web and its implications for peatland ecosystem processes in a changing climate; in particular for the fate of the sequestered carbon

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1156710376
Document Type :
Electronic Resource