Back to Search Start Over

Predicting and elucidating the etiology of fatty liver disease:A machine learning modeling and validation study in the IMI DIRECT cohorts

Authors :
Atabaki-Pasdar, Naeimeh
Ohlsson, Mattias
Viñuela, Ana
Frau, Francesca
Pomares-Millan, Hugo
Haid, Mark
Jones, Angus G
Thomas, E Louise
Koivula, Robert W
Kurbasic, Azra
Mutie, Pascal M
Fitipaldi, Hugo
Fernandez, Juan
Dawed, Adem Y
Giordano, Giuseppe N
Forgie, Ian M
McDonald, Timothy J
Rutters, Femke
Cederberg, Henna
Chabanova, Elizaveta
Dale, Matilda
Masi, Federico De
Thomas, Cecilia Engel
Allin, Kristine H.
Hansen, Tue H
Heggie, Alison
Hong, Mun-Gwan
Elders, Petra J M
Kennedy, Gwen
Kokkola, Tarja
Pedersen, Helle Krogh
Mahajan, Anubha
McEvoy, Donna
Pattou, Francois
Raverdy, Violeta
Häussler, Ragna S
Sharma, Sapna
Thomsen, Henrik S
Vangipurapu, Jagadish
Vestergaard, Henrik
Adamski, Jerzy
Musholt, Petra B
Brage, Søren
Brunak, Søren
Dermitzakis, Emmanouil
Frost, Gary
Hansen, Torben
Laakso, Markku
Pedersen, Oluf
Atabaki-Pasdar, Naeimeh
Ohlsson, Mattias
Viñuela, Ana
Frau, Francesca
Pomares-Millan, Hugo
Haid, Mark
Jones, Angus G
Thomas, E Louise
Koivula, Robert W
Kurbasic, Azra
Mutie, Pascal M
Fitipaldi, Hugo
Fernandez, Juan
Dawed, Adem Y
Giordano, Giuseppe N
Forgie, Ian M
McDonald, Timothy J
Rutters, Femke
Cederberg, Henna
Chabanova, Elizaveta
Dale, Matilda
Masi, Federico De
Thomas, Cecilia Engel
Allin, Kristine H.
Hansen, Tue H
Heggie, Alison
Hong, Mun-Gwan
Elders, Petra J M
Kennedy, Gwen
Kokkola, Tarja
Pedersen, Helle Krogh
Mahajan, Anubha
McEvoy, Donna
Pattou, Francois
Raverdy, Violeta
Häussler, Ragna S
Sharma, Sapna
Thomsen, Henrik S
Vangipurapu, Jagadish
Vestergaard, Henrik
Adamski, Jerzy
Musholt, Petra B
Brage, Søren
Brunak, Søren
Dermitzakis, Emmanouil
Frost, Gary
Hansen, Torben
Laakso, Markku
Pedersen, Oluf
Source :
Atabaki-Pasdar , N , Ohlsson , M , Viñuela , A , Frau , F , Pomares-Millan , H , Haid , M , Jones , A G , Thomas , E L , Koivula , R W , Kurbasic , A , Mutie , P M , Fitipaldi , H , Fernandez , J , Dawed , A Y , Giordano , G N , Forgie , I M , McDonald , T J , Rutters , F , Cederberg , H , Chabanova , E , Dale , M , Masi , F D , Thomas , C E , Allin , K H , Hansen , T H , Heggie , A , Hong , M-G , Elders , P J M , Kennedy , G , Kokkola , T , Pedersen , H K , Mahajan , A , McEvoy , D , Pattou , F , Raverdy , V , Häussler , R S , Sharma , S , Thomsen , H S , Vangipurapu , J , Vestergaard , H , Adamski , J , Musholt , P B , Brage , S , Brunak , S , Dermitzakis , E , Frost , G , Hansen , T , Laakso , M , Pedersen , O & IMI-DIRECT consortium 2020 , ' Predicting and elucidating the etiology of fatty liver disease : A machine learning modeling and validation study in the IMI DIRECT cohorts ' , PLoS Medicine , vol. 17 , no. 6 , e1003149 .
Publication Year :
2020

Abstract

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is highly prevalent and causes serious health complications in individuals with and without type 2 diabetes (T2D). Early diagnosis of NAFLD is important, as this can help prevent irreversible damage to the liver and, ultimately, hepatocellular carcinomas. We sought to expand etiological understanding and develop a diagnostic tool for NAFLD using machine learning.METHODS AND FINDINGS: We utilized the baseline data from IMI DIRECT, a multicenter prospective cohort study of 3,029 European-ancestry adults recently diagnosed with T2D (n = 795) or at high risk of developing the disease (n = 2,234). Multi-omics (genetic, transcriptomic, proteomic, and metabolomic) and clinical (liver enzymes and other serological biomarkers, anthropometry, measures of beta-cell function, insulin sensitivity, and lifestyle) data comprised the key input variables. The models were trained on MRI-image-derived liver fat content (<5% or ≥5%) available for 1,514 participants. We applied LASSO (least absolute shrinkage and selection operator) to select features from the different layers of omics data and random forest analysis to develop the models. The prediction models included clinical and omics variables separately or in combination. A model including all omics and clinical variables yielded a cross-validated receiver operating characteristic area under the curve (ROCAUC) of 0.84 (95% CI 0.82, 0.86; p < 0.001), which compared with a ROCAUC of 0.82 (95% CI 0.81, 0.83; p < 0.001) for a model including 9 clinically accessible variables. The IMI DIRECT prediction models outperformed existing noninvasive NAFLD prediction tools. One limitation is that these analyses were performed in adults of European ancestry residing in northern Europe, and it is unknown how well these findings will translate to people of other ancestries and exposed to environmental risk factors that differ from those of the present cohort. Another key lim

Details

Database :
OAIster
Journal :
Atabaki-Pasdar , N , Ohlsson , M , Viñuela , A , Frau , F , Pomares-Millan , H , Haid , M , Jones , A G , Thomas , E L , Koivula , R W , Kurbasic , A , Mutie , P M , Fitipaldi , H , Fernandez , J , Dawed , A Y , Giordano , G N , Forgie , I M , McDonald , T J , Rutters , F , Cederberg , H , Chabanova , E , Dale , M , Masi , F D , Thomas , C E , Allin , K H , Hansen , T H , Heggie , A , Hong , M-G , Elders , P J M , Kennedy , G , Kokkola , T , Pedersen , H K , Mahajan , A , McEvoy , D , Pattou , F , Raverdy , V , Häussler , R S , Sharma , S , Thomsen , H S , Vangipurapu , J , Vestergaard , H , Adamski , J , Musholt , P B , Brage , S , Brunak , S , Dermitzakis , E , Frost , G , Hansen , T , Laakso , M , Pedersen , O & IMI-DIRECT consortium 2020 , ' Predicting and elucidating the etiology of fatty liver disease : A machine learning modeling and validation study in the IMI DIRECT cohorts ' , PLoS Medicine , vol. 17 , no. 6 , e1003149 .
Notes :
application/pdf, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1204245034
Document Type :
Electronic Resource