Back to Search Start Over

Adaptive precision in block-Jacobi preconditioning for iterative sparse linear system solvers

Authors :
Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors
Mathworks
UK Research and Innovation
U.S. Department of Energy
European Regional Development Fund
Ministerio de Economía y Competitividad
Helmholtz Association of German Research Centers
Engineering and Physical Sciences Research Council, Reino Unido
Anzt, Hartwig
Dongarra, Jack
Flegar, Goran
Higham, Nicholas J.
Quintana Ortí, Enrique Salvador
Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors
Mathworks
UK Research and Innovation
U.S. Department of Energy
European Regional Development Fund
Ministerio de Economía y Competitividad
Helmholtz Association of German Research Centers
Engineering and Physical Sciences Research Council, Reino Unido
Anzt, Hartwig
Dongarra, Jack
Flegar, Goran
Higham, Nicholas J.
Quintana Ortí, Enrique Salvador
Publication Year :
2019

Abstract

This is the peer reviewed version of the following article: Anzt, H, Dongarra, J, Flegar, G, Higham, NJ, Quintana-Ortí, ES. Adaptive precision in block-Jacobi preconditioning for iterative sparse linear system solvers. Concurrency Computat Pract Exper. 2019; 31:e4460, which has been published in final form at https://doi.org/10.1002/cpe.4460. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.<br />[EN] We propose an adaptive scheme to reduce communication overhead caused by data movement by selectively storing the diagonal blocks of a block-Jacobi preconditioner in different precision formats (half, single, or double). This specialized preconditioner can then be combined with any Krylov subspace method for the solution of sparse linear systems to perform all arithmetic in double precision. We assess the effects of the adaptive precision preconditioner on the iteration count and data transfer cost of a preconditioned conjugate gradient solver. A preconditioned conjugate gradient method is, in general, a memory bandwidth-bound algorithm, and therefore its execution time and energy consumption are largely dominated by the costs of accessing the problem's data in memory. Given this observation, we propose a model that quantifies the time and energy savings of our approach based on the assumption that these two costs depend linearly on the bit length of a floating point number. Furthermore, we use a number of test problems from the SuiteSparse matrix collection to estimate the potential benefits of the adaptive block-Jacobi preconditioning scheme.

Details

Database :
OAIster
Notes :
TEXT, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1228689943
Document Type :
Electronic Resource