Back to Search Start Over

Roof bolt identification in underground coal mines from 3D point cloud data using local point descriptors and artificial neural network

Authors :
Singh, SK
Raval, S
Banerjee, B
Singh, SK
Raval, S
Banerjee, B
Publication Year :
2021

Abstract

Roof bolts are commonly used to provide structural support in underground mines. Frequent and automated assessment of roof bolt is critical to closely monitor any change in the roof conditions while preventing major hazards such as roof fall. However, due to challenging conditions at mine sites such as sub-optimal lighting and restrictive access, it is difficult to routinely assess roof bolts by visual inspection or traditional surveying. To overcome these challenges, this study presents an automated method of roof bolt identification from 3D point cloud data, to assist in spatio-temporal monitoring efforts at mine sites. An artificial neural network was used to classify roof bolts and extract them from 3D point cloud using local point descriptors such as the proportion of variance (POV) over multiple scales, radial surface descriptor (RSD) over multiple scales and fast point feature histogram (FPFH). Accuracy was evaluated in terms ofprecision, recall and quality metric generally used in classification studies. The generated results were compared against other machine learning algorithms such as weighted k-nearest neighbours (k-NN), ensemble subspace k-NN, support vector machine (SVM) and random forest (RF), and was found to be superior by up to 8% in terms of the achieved quality metric.

Details

Database :
OAIster
Publication Type :
Electronic Resource
Accession number :
edsoai.on1230136606
Document Type :
Electronic Resource