Back to Search Start Over

Strong blast wave interaction with multiphase media

Strong blast wave interaction with multiphase media

Authors :
Sundarapandian, Sembian
Sundarapandian, Sembian
Publication Year :
2018

Abstract

The interaction of a blast wave propagating in air with different fluids like water column, aqueous foam and thermal/density inhomogeneity have been studied both experimentally and numerically. The blast waves were generated at atmospheric conditions in a newly constructed exploding wire facility. For fixed capacitance and wire size, the intensity of the shock front (measured typically at 200 mm from the wire explosion plane) was varied by controlling the charges stored in the capacitor and the size of the test section. Qualitative features of the interaction were captured using shadowgraph technique. Numerical simulations were performed to better analyze and understand the flow features observed in experiments. The main points across each fluid interactions are as follow: Water column: A new technique was implemented to create highly repeatable, properly shaped, large diameter water column. The impact of a blast wave with shock Mach number ranging from 1.75 to 2.4 on a 22 mm diameter water column resulted in a complex system of waves propagating inside the column. Due to the concave boundary of the downstream interface, the reflected expansion wave naturally focused at a point before travelling upstream resulting in the generation of large negative pressures leading to nucleation of cavitation bubbles. Through high speed photography, various aspects of the flow features were discussed qualitatively and quantitatively. With the aid of numerical simulation, the effect of size of water column and shock strength on the maximum attainable negative pressures in the absence of cavitation were quantified. Aqueous foam: The performance of various aqueous foam barrier configurations on the attenuation of externally generated blast wave peak pressure was examined. Here a blast wave with shock Mach number 4.8 was allowed to interact with an aqueous foam barrier of initial liquid fraction 0.1. The dominant process responsible for reduction of peak pressure was the `catching up'<br />QC 20180518

Details

Database :
OAIster
Notes :
application/pdf, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1233721643
Document Type :
Electronic Resource