Back to Search
Start Over
Origin of strong photoluminescence polarization in GaNP nanowires
- Publication Year :
- 2014
-
Abstract
- The III-V semiconductor nanowires (NWs) have a great potential for applications in a variety of future electronic and photonic devices with enhanced functionality. In this work, we employ polarization resolved micro-photoluminescence (µ-PL) spectroscopy to study polarization properties of light emissions from individual GaNP and GaP/GaNP core/shell nanowires (NWs) with average diameters ranging between 100 and 350 nm. We show that the near-band-edge emission, which originates from the GaNP regions of the NWs, is strongly polarized (up to 60 % at 150 K) in the direction perpendicular to the NW axis. The polarization anisotropy can be retained up to room temperature. This polarization behavior, which is unusual for zinc blende NWs, is attributed to local strain in the vicinity of the N-related centers participating in the radiative recombination and to preferential alignment of their principal axis along the growth direction. Our findings therefore show that defect engineering via alloying with nitrogen provides an additional degree of freedom to tailor the polarization anisotropy of III-V nanowires, advantageous for their applications as nanoscale emitters of polarized light.
Details
- Database :
- OAIster
- Notes :
- application/pdf, English
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1233826893
- Document Type :
- Electronic Resource
- Full Text :
- https://doi.org/10.1021.nl502281p