Back to Search Start Over

Importance of PdpC, IglC, IglI, and IglG for modulation of a host cell death pathway induced by Francisella tularensis LVS

Authors :
Lindgren, Marie
Eneslätt, Kjell
Bröms, Jeanette
Sjöstedt, Anders
Lindgren, Marie
Eneslätt, Kjell
Bröms, Jeanette
Sjöstedt, Anders

Abstract

Modulation of host cell death pathways appears to be a prerequisite for the successful life styles of many intracellular pathogens. The facultative intracellular bacterium Francisella tularensis is highly pathogenic and effective proliferation in the macrophage cytosol leading to host cell death is a requirement for its virulence. To better understand how this is achieved, macrophages were infected with the F. tularensis live vaccine strain (LVS) and the effects were compared to those resulting from infections with deletion mutants lacking expression of either of the pdpC, iglC, iglG, or iglI genes. All of these genes encode components that together with a dozen other proteins form the Francisella pathogenicity island (FPI), a type VI secretion system. Within 12 h, a majority of the J774 cells infected with the LVS strain showed production of mitochondrial superoxide and after 24 h, marked signs of mitochondrial damage, caspase-9 and caspase-3 activation, phosphatidylserine expression, nucleosome formation, and membrane leakage. In contrast, neither of these events occurred after infection with the ∆iglI or ∆iglC mutant, although the former strain replicated. The ∆iglG mutant replicated effectively but induced only marginal cytopathogenic effects after 24 h and intermediate effects after 48 h. In contrast, the ∆pdpC mutant showed no replication, but induced marked mitochondrial superoxide production and mitochondrial damage, caspase-3 activation, nucleosome formation, and phosphatidylserine expression, although the effects were delayed compared to LVS. The unique phenotypes of the mutants provide novel insights regarding the roles of individual FPI components for the modulation of the cytopathogenic effects resulting from the F. tularensis infection.

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1234093992
Document Type :
Electronic Resource