Back to Search
Start Over
Introduction to White Noise, Hida-Malliavin Calculus and Applications
-
Abstract
- The purpose of these lectures is threefold: We first give a short survey of the Hida white noise calculus, and in this context we introduce the Hida-Malliavin derivative as a stochastic gradient with values in the Hida stochastic distribution space (S. We show that this Hida-Malliavin derivative defined on L2(FT,P) is a natural extension of the classical Malliavin derivative defined on the subspace D1,2 of L2(P). The Hida-Malliavin calculus allows us to prove new results under weaker assumptions than could be obtained by the classical theory. In particular, we prove the following: (i) A general integration by parts formula and duality theorem for Skorohod integrals, (ii) a generalised fundamental theorem of stochastic calculus, and (iii) a general Clark-Ocone theorem, valid for all F∈L2(FT,P). As applications of the above theory we prove the following: A general representation theorem for backward stochastic differential equations with jumps, in terms of Hida-Malliavin derivatives; a general stochastic maximum principle for optimal control; backward stochastic Volterra integral equations; optimal control of stochastic Volterra integral equations and other stochastic systems.
Details
- Database :
- OAIster
- Notes :
- English
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1234191197
- Document Type :
- Electronic Resource