Back to Search Start Over

New experimental results on the interaction of molten corium with reactor vessel steel

Authors :
Bechta, Sevostian
Khabensky, V.B.
Granovsky, V.S.
Krushinov, E.V.
Vitol, S.A
Gusarov, V.V.
Almjashev, V.I.
Lopukh, D.B.
Tromm, W.
Bottomley, D.
Fischer, M.
Cognet, G.
Kymäläinen, O.
Bechta, Sevostian
Khabensky, V.B.
Granovsky, V.S.
Krushinov, E.V.
Vitol, S.A
Gusarov, V.V.
Almjashev, V.I.
Lopukh, D.B.
Tromm, W.
Bottomley, D.
Fischer, M.
Cognet, G.
Kymäläinen, O.
Publication Year :
2004

Abstract

In order to justify the concept of in-vessel core melt retention, it is necessary to understand the thermal and physico-chemical phenomena. Especially the interaction of the molten pool with the reactor vessel during outside cooling needs to be understood. These phenomena are very complex, in particular, where interactions with the oxidic melt are concerned. In the early stages of the retention process, the oxidic corium and the vessel steel interact under the conditions of low oxygen potential in the melt. These conditions can be simulated by a molten corium having the composition UO2/ZrO 2Zr, where the degree of Zr-oxidation is in the range between 30 % (C-30) and 100 % (C-100). Corresponding experiments with prototypic melts at low oxygen potentials are being performed in the ISTC METCOR project 2nd phase. These are: MC 5 of corium composition 71w%UO2-29w%ZrO 2 (C-100) in neutral atmosphere (argon), MC 6 of corium composition 76w%UO2-9w%ZrO2-15w%Zr (C∼30), also in argon. In test MC 5, the interaction of molten C-100 corium with a water-cooled steel specimen was studied for the following maximum temperatures at the specimen surface: 1075°C, 1180°C, 1315°C and 1435°C. The total duration of the experiment was ∼ 36 hours. The MC5 test serves as a reference test for determining the characteristics of the interaction between oxidic melt and steel specimen under the conditions of minimum chemical interaction potential. To investigate the effect of substoichiometry, test MC 6 was then performed with suboxidized molten corium C∼30. The maximum surface temperature of the cooled steel specimen was held at ∼ 1400°C. The test duration was ∼ 10 hours. The ablation phenomena were found to differ significantly from those observed both in the reference test, as well as in former tests with oxidized melts, as they involved the formation of a low-melting metallic phase at the interface which contains iron, zirconium and uranium. The paper summarizes the results of the experiments a<br />cited By (since 1996) 2. QC 20120306

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1234601196
Document Type :
Electronic Resource