Back to Search Start Over

Agnostic Pathway/Gene Set Analysis of Genome-Wide Association Data Identifies Associations for Pancreatic Cancer

Authors :
Walsh, Naomi
Zhang, Han
Hyland, Paula L.
Yang, Qi
Mocci, Evelina
Zhang, Mingfeng
Childs, Erica J.
Collins, Irene
Wang, Zhaoming
Arslan, Alan A.
Beane-Freeman, Laura
Bracci, Paige M.
Brennan, Paul
Canzian, Federico
Duell, Eric J.
Gallinger, Steven
Giles, Graham G.
Goggins, Michael
Goodman, Gary E.
Goodman, Phyllis J.
Hung, Rayjean J.
Kooperberg, Charles
Kurtz, Robert C.
Malats, Núria
LeMarchand, Loic
Neale, Rachel E.
Olson, Sara H.
Scelo, Ghislaine
Shu, Xiao O.
Van Den Eeden, Stephen K.
Visvanathan, Kala
White, Emily
Zheng, Wei
Albanes, Demetrius
Andreotti, Gabriella
Babic, Ana
Bamlet, William R.
Berndt, Sonja I.
Borgida, Ayelet
Boutron-Ruault, Marie-Christine
Brais, Lauren
Bueno-de-Mesquita, Bas
Buring, Julie
Chaffee, Kari G.
Chanock, Stephen
Cleary, Sean
Cotterchio, Michelle
Foretova, Lenka
Fuchs, Charles
M. Gaziano, J. Michael
Giovannucci, Edward
Hackert, Thilo
Haiman, Christopher
Hartge, Patricia
Hasan, Manal
Helzlsouer, Kathy J.
Herman, Joseph
Holcatova, Ivana
Holly, Elizabeth A.
Hoover, Robert
Janout, Vladimir
Klein, Eric A.
Laheru, Daniel
Lee, I-Min
Lu, Lingeng
Mannisto, Satu
Milne, Roger L.
Oberg, Ann L.
Orlow, Irene
Patel, Alpa V.
Peters, Ulrike
Porta, Miquel
Real, Francisco X.
Rothman, Nathaniel
Sesso, Howard D.
Severi, Gianluca
Silverman, Debra
Strobel, Oliver
Sund, Malin
Thornquist, Mark D.
Tobias, Geoffrey S.
Wactawski-Wende, Jean
Wareham, Nick
Weiderpass, Elisabete
Wentzensen, Nicolas
Wheeler, William
Yu, Herbert
Zeleniuch-Jacquotte, Anne
Kraft, Peter
Li, Donghui
Jacobs, Eric J.
Petersen, Gloria M.
Wolpin, Brian M.
Risch, Harvey A.
Amundadottir, Laufey T.
Yu, Kai
Klein, Alison P.
Stolzenberg-Solomon, Rachael Z.
Walsh, Naomi
Zhang, Han
Hyland, Paula L.
Yang, Qi
Mocci, Evelina
Zhang, Mingfeng
Childs, Erica J.
Collins, Irene
Wang, Zhaoming
Arslan, Alan A.
Beane-Freeman, Laura
Bracci, Paige M.
Brennan, Paul
Canzian, Federico
Duell, Eric J.
Gallinger, Steven
Giles, Graham G.
Goggins, Michael
Goodman, Gary E.
Goodman, Phyllis J.
Hung, Rayjean J.
Kooperberg, Charles
Kurtz, Robert C.
Malats, Núria
LeMarchand, Loic
Neale, Rachel E.
Olson, Sara H.
Scelo, Ghislaine
Shu, Xiao O.
Van Den Eeden, Stephen K.
Visvanathan, Kala
White, Emily
Zheng, Wei
Albanes, Demetrius
Andreotti, Gabriella
Babic, Ana
Bamlet, William R.
Berndt, Sonja I.
Borgida, Ayelet
Boutron-Ruault, Marie-Christine
Brais, Lauren
Bueno-de-Mesquita, Bas
Buring, Julie
Chaffee, Kari G.
Chanock, Stephen
Cleary, Sean
Cotterchio, Michelle
Foretova, Lenka
Fuchs, Charles
M. Gaziano, J. Michael
Giovannucci, Edward
Hackert, Thilo
Haiman, Christopher
Hartge, Patricia
Hasan, Manal
Helzlsouer, Kathy J.
Herman, Joseph
Holcatova, Ivana
Holly, Elizabeth A.
Hoover, Robert
Janout, Vladimir
Klein, Eric A.
Laheru, Daniel
Lee, I-Min
Lu, Lingeng
Mannisto, Satu
Milne, Roger L.
Oberg, Ann L.
Orlow, Irene
Patel, Alpa V.
Peters, Ulrike
Porta, Miquel
Real, Francisco X.
Rothman, Nathaniel
Sesso, Howard D.
Severi, Gianluca
Silverman, Debra
Strobel, Oliver
Sund, Malin
Thornquist, Mark D.
Tobias, Geoffrey S.
Wactawski-Wende, Jean
Wareham, Nick
Weiderpass, Elisabete
Wentzensen, Nicolas
Wheeler, William
Yu, Herbert
Zeleniuch-Jacquotte, Anne
Kraft, Peter
Li, Donghui
Jacobs, Eric J.
Petersen, Gloria M.
Wolpin, Brian M.
Risch, Harvey A.
Amundadottir, Laufey T.
Yu, Kai
Klein, Alison P.
Stolzenberg-Solomon, Rachael Z.
Publication Year :
2019

Abstract

Background: Genome-wide association studies (GWAS) identify associations of individual single-nucleotide polymorphisms (SNPs) with cancer risk but usually only explain a fraction of the inherited variability. Pathway analysis of genetic variants is a powerful tool to identify networks of susceptibility genes. Methods: We conducted a large agnostic pathway-based meta-analysis of GWAS data using the summary-based adaptive rank truncated product method to identify gene sets and pathways associated with pancreatic ductal adenocarcinoma (PDAC) in 9040 cases and 12 496 controls. We performed expression quantitative trait loci (eQTL) analysis and functional annotation of the top SNPs in genes contributing to the top associated pathways and gene sets. All statistical tests were two-sided. Results: We identified 14 pathways and gene sets associated with PDAC at a false discovery rate of less than 0.05. After Bonferroni correction (P ≤ 1.3 × 10-5), the strongest associations were detected in five pathways and gene sets, including maturity-onset diabetes of the young, regulation of beta-cell development, role of epidermal growth factor (EGF) receptor transactivation by G protein-coupled receptors in cardiac hypertrophy pathways, and the Nikolsky breast cancer chr17q11-q21 amplicon and Pujana ATM Pearson correlation coefficient (PCC) network gene sets. We identified and validated rs876493 and three correlating SNPs (PGAP3) and rs3124737 (CASP7) from the Pujana ATM PCC gene set as eQTLs in two normal derived pancreas tissue datasets. Conclusion: Our agnostic pathway and gene set analysis integrated with functional annotation and eQTL analysis provides insight into genes and pathways that may be biologically relevant for risk of PDAC, including those not previously identified.

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1234645527
Document Type :
Electronic Resource
Full Text :
https://doi.org/10.1093.jnci.djy155