Back to Search Start Over

Assembly of cellulose nanocrystals in a levitating drop probed by time-resolved small angle X-ray scattering

Authors :
Liu, Yingxin
Agthe, Michael
Salajková, Michaela
Gordeyeva, Korneliya
Guccini, Valentina
Fall, Andreas
Salazar-Alvarez, Germán
Schütz, Christina
Bergström, Lennart
Liu, Yingxin
Agthe, Michael
Salajková, Michaela
Gordeyeva, Korneliya
Guccini, Valentina
Fall, Andreas
Salazar-Alvarez, Germán
Schütz, Christina
Bergström, Lennart
Publication Year :
2018

Abstract

Assembly of bio-based nano-sized particles into complex architectures and morphologies is an area of fundamental interest and technical importance. We have investigated the assembly of sulfonated cellulose nanocrystals (CNC) dispersed in a shrinking levitating aqueous drop using time-resolved small angle X-ray scattering (SAXS). Analysis of the scaling of the particle separation distance (d) with particle concentration (c) was used to follow the transition of CNC dispersions from an isotropic state at 1-2 vol% to a compressed nematic state at particle concentrations above 30 vol%. Comparison with SAXS measurements on CNC dispersions at near equilibrium conditions shows that evaporation-induced assembly of CNC in large levitating drops is comparable to bulk systems. Colloidal states with d vs. c scalings intermediate between isotropic dispersions and unidirectional compression of the nematic structure could be related to the biphasic region and gelation of CNC. Nanoscale structural information of CNC assembly up to very high particle concentrations can help to fabricate nanocellulose-based materials by evaporative methods.

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1234930758
Document Type :
Electronic Resource
Full Text :
https://doi.org/10.1039.c8nr05598j