Back to Search Start Over

Minority and mode conversion heating in (He-3)-H JET plasmas

Authors :
Van Eester, D.
Lerche, E.
Johnson, T. J.
Hellsten, T.
Ongena, J.
Mayoral, M-L
Frigione, D.
Sozzi, C.
Calabro, G.
Lennholm, M.
Beaumont, P.
Blackman, T.
Brennan, D.
Brett, A.
Cecconello, Marco
Coffey, I.
Coyne, A.
Crombe, K.
Czarnecka, A.
Felton, R.
Gatu Johnson, Maria
Giroud, C.
Gorini, G.
Hellesen, Carl
Jacquet, P.
Kazakov, Ye
Kiptily, V.
Knipe, S.
Krasilnikov, A.
Lin, Y.
Maslov, M.
Monakhov, I.
Noble, C.
Nocente, M.
Pangioni, L.
Proverbio, I.
Stamp, M.
Studholme, W.
Tardocchi, M.
Versloot, T. W.
Vdovin, V.
Whitehurst, A.
Wooldridge, E.
Zoita, V.
Van Eester, D.
Lerche, E.
Johnson, T. J.
Hellsten, T.
Ongena, J.
Mayoral, M-L
Frigione, D.
Sozzi, C.
Calabro, G.
Lennholm, M.
Beaumont, P.
Blackman, T.
Brennan, D.
Brett, A.
Cecconello, Marco
Coffey, I.
Coyne, A.
Crombe, K.
Czarnecka, A.
Felton, R.
Gatu Johnson, Maria
Giroud, C.
Gorini, G.
Hellesen, Carl
Jacquet, P.
Kazakov, Ye
Kiptily, V.
Knipe, S.
Krasilnikov, A.
Lin, Y.
Maslov, M.
Monakhov, I.
Noble, C.
Nocente, M.
Pangioni, L.
Proverbio, I.
Stamp, M.
Studholme, W.
Tardocchi, M.
Versloot, T. W.
Vdovin, V.
Whitehurst, A.
Wooldridge, E.
Zoita, V.
Publication Year :
2012

Abstract

Radio frequency (RF) heating experiments have recently been conducted in JET (He-3)-H plasmas. This type of plasmas will be used in ITER's non-activated operation phase. Whereas a companion paper in this same PPCF issue will discuss the RF heating scenario's at half the nominal magnetic field, this paper documents the heating performance in (He-3)-H plasmas at full field, with fundamental cyclotron heating of He-3 as the only possible ion heating scheme in view of the foreseen ITER antenna frequency bandwidth. Dominant electron heating with global heating efficiencies between 30% and 70% depending on the He-3 concentration were observed and mode conversion (MC) heating proved to be as efficient as He-3 minority heating. The unwanted presence of both He-4 and D in the discharges gave rise to 2 MC layers rather than a single one. This together with the fact that the location of the high-field side fast wave (FW) cutoff is a sensitive function of the parallel wave number and that one of the locations of the wave confluences critically depends on the He-3 concentration made the interpretation of the results, although more complex, very interesting: three regimes could be distinguished as a function of X[He-3]: (i) a regime at low concentration (X[He-3] < 1.8%) at which ion cyclotron resonance frequency (ICRF) heating is efficient, (ii) a regime at intermediate concentrations (1.8 < X[He-3] < 5%) in which the RF performance is degrading and ultimately becoming very poor, and finally (iii) a good heating regime at He-3 concentrations beyond 6%. In this latter regime, the heating efficiency did not critically depend on the actual concentration while at lower concentrations (X[He-3] < 4%) a bigger excursion in heating efficiency is observed and the estimates differ somewhat from shot to shot, also depending on whether local or global signals are chosen for the analysis. The different dynamics at the various concentrations can be traced back to the presence of 2

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1235067712
Document Type :
Electronic Resource
Full Text :
https://doi.org/10.1088.0741-3335.54.7.074009