Back to Search Start Over

Machine learning-assisted cross-slice radio resource optimization: Implementation framework and algorithmic solution

Authors :
Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions
Universitat Politècnica de Catalunya. Doctorat en Teoria del Senyal i Comunicacions
Universitat Politècnica de Catalunya. GRCM - Grup de Recerca en Comunicacions Mòbils
Ferrús Ferré, Ramón Antonio
Pérez Romero, Jordi
Sallent Roig, Oriol
Vilà Muñoz, Irene
Agustí Comes, Ramon
Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions
Universitat Politècnica de Catalunya. Doctorat en Teoria del Senyal i Comunicacions
Universitat Politècnica de Catalunya. GRCM - Grup de Recerca en Comunicacions Mòbils
Ferrús Ferré, Ramón Antonio
Pérez Romero, Jordi
Sallent Roig, Oriol
Vilà Muñoz, Irene
Agustí Comes, Ramon
Publication Year :
2020

Abstract

Network slicing is a central feature in 5G and beyond systems to allow operators to customize their networks for different applications and customers. With network slicing, different logical networks, i.e. network slices, with specific functional and performance requirements can be created over the same physical network. A key challenge associated with the exploitation of the network slicing feature is how to efficiently allocate underlying network resources, especially radio resources, to cope with the spatio-temporal traffic variability while ensuring that network slices can be provisioned and assured within the boundaries of Service Level Agreements / Service Level Specifications (SLAs/SLSs) with customers. In this field, the use of artificial intelligence, and, specifically, Machine Learning (ML) techniques, has arisen as a promising approach to cater for the complexity of resource allocation optimization among network slices. This paper tackles the description of a feasible implementation framework for deploying ML-assisted solutions for cross-slice radio resource optimization that builds upon the work conducted by 3GPP and O-RAN Alliance. On this basis, the paper also describes and evaluates an ML-assisted solution that uses a Multi-Agent Reinforcement Learning (MARL) approach based on the Deep Q-Network (DQN) technique and fits within the presented implementation framework.<br />This work has been supported by the Spanish Research Council and FEDER funds under SONAR 5G grant (ref. TEC2017-82651-R) and by the Secretariat for Universities and Research of the Ministry of Business and Knowledge of the Government of Catalonia under grant 2019FI_B1 00102.<br />Peer Reviewed<br />Postprint (published version)

Details

Database :
OAIster
Notes :
18 p., application/pdf, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1238016914
Document Type :
Electronic Resource