Back to Search Start Over

Innate immune recognition of glycans targets HIV nanoparticle immunogens to germinal centers

Authors :
Harvard University--MIT Division of Health Sciences and Technology
Massachusetts Institute of Technology. Department of Biological Engineering
Massachusetts Institute of Technology. Department of Materials Science and Engineering
Koch Institute for Integrative Cancer Research at MIT
Tokatlian, Talar
Read, Benjamin J.
Jones, Christopher A.
Kulp, Daniel W.
Menis, Sergey
Chang, Jason Y. H.
Steichen, Jon M.
Kumari, Sudha
Allen, Joel D.
Dane, Eric L.
Liguori, Alessia
Sangesland, Maya
Lingwood, Daniel
Crispin, Max
Schief, William R.
Irvine, Darrell J
Harvard University--MIT Division of Health Sciences and Technology
Massachusetts Institute of Technology. Department of Biological Engineering
Massachusetts Institute of Technology. Department of Materials Science and Engineering
Koch Institute for Integrative Cancer Research at MIT
Tokatlian, Talar
Read, Benjamin J.
Jones, Christopher A.
Kulp, Daniel W.
Menis, Sergey
Chang, Jason Y. H.
Steichen, Jon M.
Kumari, Sudha
Allen, Joel D.
Dane, Eric L.
Liguori, Alessia
Sangesland, Maya
Lingwood, Daniel
Crispin, Max
Schief, William R.
Irvine, Darrell J
Source :
PMC
Publication Year :
2020

Abstract

In vaccine design, antigens are often arrayed in a multivalent nanoparticle form, but in vivo mechanisms underlying the enhanced immunity elicited by such vaccines remain poorly understood. We compared the fates of two different heavily glycosylated HIV antigens, a gp120-derived mini-protein and a large, stabilized envelope trimer, in protein nanoparticle or “free” forms after primary immunization. Unlike monomeric antigens, nanoparticles were rapidly shuttled to the follicular dendritic cell (FDC) network and then concentrated in germinal centers in a complement-, mannose-binding lectin (MBL)–, and immunogen glycan–dependent manner. Loss of FDC localization in MBL-deficient mice or via immunogen deglycosylation significantly affected antibody responses. These findings identify an innate immune–mediated recognition pathway promoting antibody responses to particulate antigens, with broad implications for humoral immunity and vaccine design.

Details

Database :
OAIster
Journal :
PMC
Notes :
application/pdf, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1239994068
Document Type :
Electronic Resource