Cite
A maximum trip covering location problem with an alternative mode of transportation on tree networks and segments
MLA
Universidad de Sevilla. Departamento de Matemática Aplicada II, et al. A Maximum Trip Covering Location Problem with an Alternative Mode of Transportation on Tree Networks and Segments. 2014. EBSCOhost, widgets.ebscohost.com/prod/customlink/proxify/proxify.php?count=1&encode=0&proxy=&find_1=&replace_1=&target=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&scope=site&db=edsoai&AN=edsoai.on1240068592&authtype=sso&custid=ns315887.
APA
Universidad de Sevilla. Departamento de Matemática Aplicada II, Universidad de Sevilla. FQM241: Grupo de Investigación en Localización, Körner, M. C., Mesa López-Colmenar, J. A., Perea Rojas-Marcos, F., Schöbel, A., & Scholz, D. (2014). A maximum trip covering location problem with an alternative mode of transportation on tree networks and segments.
Chicago
Universidad de Sevilla. Departamento de Matemática Aplicada II, Universidad de Sevilla. FQM241: Grupo de Investigación en Localización, Mark Christof Körner, Juan Antonio Mesa López-Colmenar, Federico Perea Rojas-Marcos, Anita Schöbel, and Daniel Scholz. 2014. “A Maximum Trip Covering Location Problem with an Alternative Mode of Transportation on Tree Networks and Segments.” http://widgets.ebscohost.com/prod/customlink/proxify/proxify.php?count=1&encode=0&proxy=&find_1=&replace_1=&target=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&scope=site&db=edsoai&AN=edsoai.on1240068592&authtype=sso&custid=ns315887.