Back to Search Start Over

Luminescence properties of Eu3+ activated Y2MoO6 powders calcined at different temperatures

Authors :
Stanković, Nadežda
Nikolić, Marko
Jelenković, Branislav
Daneu, Nina
Maletaškić, Jelena
Prekajski-Đorđević, Marija D.
Matović, Branko
Stanković, Nadežda
Nikolić, Marko
Jelenković, Branislav
Daneu, Nina
Maletaškić, Jelena
Prekajski-Đorđević, Marija D.
Matović, Branko
Source :
Processing and Application of Ceramics
Publication Year :
2020

Abstract

In the last decade, an immense progress has been made in white LEDs, mainly due to the development of red-emitting phosphors. In this paper, we report on the synthesis of Eu3+ activated Y2MoO6 by a self-initiated and self-sustained method. The obtained powder was calcined at various temperatures in the 600–1400 °C range and examined by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and photoluminescence spectroscopy (PL). The results revealed that all powders are single phase Y2MoO6:Eu3+, with particle size in the nanorange at lower treatment temperatures (600 and 800 °C) and in the microrange at higher calcination temperatures (1000–1400 °C). The obtained powders are promising materials for white light-emitting diodes as they can efficiently absorb energy in 324–425 nm region (near-UV to blue light region) and emit at 611 nm in the red region of the spectrum, while exhibiting high thermal and chemical stability.

Details

Database :
OAIster
Journal :
Processing and Application of Ceramics
Notes :
Processing and Application of Ceramics, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1242106816
Document Type :
Electronic Resource