Back to Search Start Over

Switching from reactant to substrate engineering in the selective synthesis of graphene nanoribbons

Authors :
European Commission
European Research Council
Ministerio de Economía, Industria y Competitividad (España)
Eusko Jaurlaritza
Gobierno de Aragón
Università degli Studi di Padova
Merino-Díez, Nestor
Lobo-Checa, Jorge
Nita, Pawel
Garcia-Lekue, Aran
Basagni, Andrea
Vasseur, Guillaume
Tiso, Federica
Sedona, Francesco
Das, Pranab K.
Fujii, Jun
Vobornik, Ivana
Sambi, Mauro
Pascual, José I.
Ortega, J. Enrique
Oteyza, Dimas G. de
European Commission
European Research Council
Ministerio de Economía, Industria y Competitividad (España)
Eusko Jaurlaritza
Gobierno de Aragón
Università degli Studi di Padova
Merino-Díez, Nestor
Lobo-Checa, Jorge
Nita, Pawel
Garcia-Lekue, Aran
Basagni, Andrea
Vasseur, Guillaume
Tiso, Federica
Sedona, Francesco
Das, Pranab K.
Fujii, Jun
Vobornik, Ivana
Sambi, Mauro
Pascual, José I.
Ortega, J. Enrique
Oteyza, Dimas G. de
Publication Year :
2018

Abstract

The challenge of synthesizing graphene nanoribbons (GNRs) with atomic precision is currently being pursued along a one-way road, based on the synthesis of adequate molecular precursors that react in predefined ways through self-assembly processes. The synthetic options for GNR generation would multiply by adding a new direction to this readily successful approach, especially if both of them can be combined. We show here how GNR synthesis can be guided by an adequately nanotemplated substrate instead of by the traditionally designed reactants. The structural atomic precision, unachievable to date through top-down methods, is preserved by the self-assembly process. This new strategy’s proof-of-concept compares experiments using 4,4′′-dibromo-para-terphenyl as a molecular precursor on flat Au(111) and stepped Au(322) substrates. As opposed to the former, the periodic steps of the latter drive the selective synthesis of 6 atom-wide armchair GNRs, whose electronic properties have been further characterized in detail by scanning tunneling spectroscopy, angle resolved photoemission, and density functional theory calculations.

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1257715088
Document Type :
Electronic Resource