Back to Search Start Over

Novel Cache Hierarchies with Photonic Interconnects for Chip Multiprocessors

Authors :
Sahuquillo Borrás, Julio
Petit Martí, Salvador Vicente
Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Puche Lara, José
Sahuquillo Borrás, Julio
Petit Martí, Salvador Vicente
Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Puche Lara, José
Publication Year :
2021

Abstract

[ES] Los procesadores multinúcleo actuales cuentan con recursos compartidos entre los diferentes núcleos. Dos de estos recursos compartidos, la cache de último nivel y el ancho de banda de memoria principal, pueden convertirse en cuellos de botella para el rendimiento. Además, con el crecimiento del número de núcleos que implementan los diseños más recientes, la red dentro del chip también se convierte en un cuello de botella que puede afectar negativamente al rendimiento, ya que las redes tradicionales pueden encontrar limitaciones a su escalabilidad en el futuro cercano. Prácticamente la totalidad de los diseños actuales implementan jerarquías de memoria que se comunican mediante rápidas redes de interconexión. Esta organización es eficaz dado que permite reducir el número de accesos que se realizan a memoria principal y la latencia media de acceso a memoria. Las caches, la red de interconexión y la memoria principal, conjuntamente con otras técnicas conocidas como la prebúsqueda, permiten reducir las enormes latencias de acceso a memoria principal, limitando así el impacto negativo ocasionado por la diferencia de rendimiento existente entre los núcleos de cómputo y la memoria. Sin embargo, compartir los recursos mencionados es fuente de diferentes problemas y retos, siendo uno de los principales el manejo de la interferencia entre aplicaciones. Hacer un uso eficiente de la jerarquía de memoria y las caches, así como contar con una red de interconexión apropiada, es necesario para sostener el crecimiento del rendimiento en los diseños tanto actuales como futuros. Esta tesis analiza y estudia los principales problemas e inconvenientes observados en estos dos recursos: la cache de último nivel y la red dentro del chip. En primer lugar, se estudia la escalabilidad de las tradicionales redes dentro del chip con topología de malla, así como esta puede verse comprometida en próximos diseños que cuenten con mayor número de núcleos. Los resultados de este estudio muestran<br />[CA] Els processadors multinucli actuals compten amb recursos compartits entre els diferents nuclis. Dos d'aquests recursos compartits, la memòria d’últim nivell i l'ample de banda de memòria principal, poden convertir-se en colls d'ampolla per al rendiment. A mes, amb el creixement del nombre de nuclis que implementen els dissenys mes recents, la xarxa dins del xip també es converteix en un coll d'ampolla que pot afectar negativament el rendiment, ja que les xarxes tradicionals poden trobar limitacions a la seva escalabilitat en el futur proper. Pràcticament la totalitat dels dissenys actuals implementen jerarquies de memòria que es comuniquen mitjançant rapides xarxes d’interconnexió. Aquesta organització es eficaç ates que permet reduir el nombre d'accessos que es realitzen a memòria principal i la latència mitjana d’accés a memòria. Les caches, la xarxa d’interconnexió i la memòria principal, conjuntament amb altres tècniques conegudes com la prebúsqueda, permeten reduir les enormes latències d’accés a memòria principal, limitant així l'impacte negatiu ocasionat per la diferencia de rendiment existent entre els nuclis de còmput i la memòria. No obstant això, compartir els recursos esmentats és font de diversos problemes i reptes, sent un dels principals la gestió de la interferència entre aplicacions. Fer un us eficient de la jerarquia de memòria i les caches, així com comptar amb una xarxa d’interconnexió apropiada, es necessari per sostenir el creixement del rendiment en els dissenys tant actuals com futurs. Aquesta tesi analitza i estudia els principals problemes i inconvenients observats en aquests dos recursos: la memòria cache d’últim nivell i la xarxa dins del xip. En primer lloc, s'estudia l'escalabilitat de les xarxes tradicionals dins del xip amb topologia de malla, així com aquesta es pot veure compromesa en propers dissenys que compten amb major nombre de nuclis. Els resultats d'aquest estudi mostren que, a major nombre de nuclis, l'impacte negatiu d<br />[EN] Current multicores face the challenge of sharing resources among the different processor cores. Two main shared resources act as major performance bottlenecks in current designs: the off-chip main memory bandwidth and the last level cache. Additionally, as the core count grows, the network on-chip is also becoming a potential performance bottleneck, since traditional designs may find scalability issues in the near future. Memory hierarchies communicated through fast interconnects are implemented in almost every current design as they reduce the number of off-chip accesses and the overall latency, respectively. Main memory, caches, and interconnection resources, together with other widely-used techniques like prefetching, help alleviate the huge memory access latencies and limit the impact of the core-memory speed gap. However, sharing these resources brings several concerns, being one of the most challenging the management of the inter-application interference. Since almost every running application needs to access to main memory, all of them are exposed to interference from other co-runners in their way to the memory controller. For this reason, making an efficient use of the available cache space, together with achieving fast and scalable interconnects, is critical to sustain the performance in current and future designs. This dissertation analyzes and addresses the most important shortcomings of two major shared resources: the Last Level Cache (LLC) and the Network on Chip (NoC). First, we study the scalability of both electrical and optical NoCs for future multicoresand many-cores. To perform this study, we model optical interconnects in a cycle-accurate multicore simulation framework. A proper model is required; otherwise, important performance deviations may be observed otherwise in the evaluation results. The study reveals that, as the core count grows, the effect of distance on the end-to-end latency can negatively impact on the processor performance. I

Details

Database :
OAIster
Notes :
TEXT, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1258799139
Document Type :
Electronic Resource