Back to Search Start Over

Completability and optimal factorization norms in tensor products of Banach function spaces

Authors :
Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
European Regional Development Fund
Ministerio de Ciencia e Innovación
Ministerio de Economía y Competitividad
Consejo Nacional de Ciencia y Tecnología, México
Calabuig, J. M.
Fernández-Unzueta, M.
Galaz-Fontes, F.
Sánchez Pérez, Enrique Alfonso
Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
European Regional Development Fund
Ministerio de Ciencia e Innovación
Ministerio de Economía y Competitividad
Consejo Nacional de Ciencia y Tecnología, México
Calabuig, J. M.
Fernández-Unzueta, M.
Galaz-Fontes, F.
Sánchez Pérez, Enrique Alfonso
Publication Year :
2019

Abstract

[EN] Given s-finite measure spaces ( 1, 1, mu 1) and ( 2, 2, mu 2), we consider Banach spaces X1(mu 1) and X2(mu 2), consisting of L0(mu 1) and L0(mu 2) measurable functions respectively, and study when the completion of the simple tensors in the projective tensor product X1(mu 1). p X2(mu 2) is continuously included in the metric space of measurable functions L0(mu 1. mu 2). In particular, we prove that the elements of the completion of the projective tensor product of L p-spaces are measurable functions with respect to the product measure. Assuming certain conditions, we finally showthat given a bounded linear operator T : X1(mu 1). p X2(mu 2). E (where E is a Banach space), a norm can be found for T to be bounded, which is ` minimal' with respect to a given property (2-rectangularity). The same technique may work for the case of n-spaces.

Details

Database :
OAIster
Notes :
TEXT, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1258889853
Document Type :
Electronic Resource