Back to Search Start Over

Automatic evaluation of degree of cleanliness in capsule endoscopy based on a novel CNN architecture

Authors :
Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia
Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
European Commission
Noorda, Reinier
Nevárez, Andrea
Colomer, Adrián
Pons Beltrán, Vicente
Naranjo Ornedo, Valeriana
Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia
Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
European Commission
Noorda, Reinier
Nevárez, Andrea
Colomer, Adrián
Pons Beltrán, Vicente
Naranjo Ornedo, Valeriana
Publication Year :
2020

Abstract

[EN] Capsule endoscopy (CE) is a widely used, minimally invasive alternative to traditional endoscopy that allows visualisation of the entire small intestine. Patient preparation can help to obtain a cleaner intestine and thus better visibility in the resulting videos. However, studies on the most effective preparation method are conflicting due to the absence of objective, automatic cleanliness evaluation methods. In this work, we aim to provide such a method capable of presenting results on an intuitive scale, with a relatively light-weight novel convolutional neural network architecture at its core. We trained our model using 5-fold cross-validation on an extensive data set of over 50,000 image patches, collected from 35 different CE procedures, and compared it with state-of-the-art classification methods. From the patch classification results, we developed a method to automatically estimate pixel-level probabilities and deduce cleanliness evaluation scores through automatically learnt thresholds. We then validated our method in a clinical setting on 30 newly collected CE videos, comparing the resulting scores to those independently assigned by human specialists. We obtained the highest classification accuracy for the proposed method (95.23%), with significantly lower average prediction times than for the second-best method. In the validation of our method, we found acceptable agreement with two human specialists compared to interhuman agreement, showing its validity as an objective evaluation method.

Details

Database :
OAIster
Notes :
TEXT, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1258893444
Document Type :
Electronic Resource