Back to Search Start Over

Factorization through Lorentz spaces for operators acting in Banach function spaces

Authors :
Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
European Regional Development Fund
Ministerio de Economía y Competitividad
Sánchez Pérez, Enrique Alfonso
Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
European Regional Development Fund
Ministerio de Economía y Competitividad
Sánchez Pérez, Enrique Alfonso
Publication Year :
2019

Abstract

[EN] We show a factorization through Lorentz spaces for Banach-space-valued operators defined in Banach function spaces. Although our results are inspired in the classical factorization theorem for operators from Ls-spaces through Lorentz spaces Lq,1 due to Pisier, our arguments are different and essentially connected with Maurey's theorem for operators that factor through Lp-spaces. As a consequence, we obtain a new characterization of Lorentz Lq,1-spaces in terms of lattice geometric properties, in the line of the (isomorphic) description of Lp-spaces as the unique ones that are p-convex and p-concave.

Details

Database :
OAIster
Notes :
TEXT, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1258894711
Document Type :
Electronic Resource