Back to Search Start Over

Opportunities for DOE National Laboratory-led QuantISED Experiments

Authors :
Barry, Peter
Berggren, Karl
Balantekin, A. Baha
Bollinger, John
Bunker, Ray
Charaev, Ilya
Chiles, Jeff
Chou, Aaron
Demarteau, Marcel
Formaggio, Joe
Graham, Peter
Habib, Salman
Hume, David
Irwin, Kent
Lukin, Mikhail
Lykken, Joseph
Maruyama, Reina
Mueller, Holger
Nam, SaeWoo
Nomerotski, Andrei
Orrell, John
Plunkett, Robert
Pooser, Raphael
Preskill, John
Rajendran, Surjeet
Sushkov, Alex
Walsworth, Ronald
Barry, Peter
Berggren, Karl
Balantekin, A. Baha
Bollinger, John
Bunker, Ray
Charaev, Ilya
Chiles, Jeff
Chou, Aaron
Demarteau, Marcel
Formaggio, Joe
Graham, Peter
Habib, Salman
Hume, David
Irwin, Kent
Lukin, Mikhail
Lykken, Joseph
Maruyama, Reina
Mueller, Holger
Nam, SaeWoo
Nomerotski, Andrei
Orrell, John
Plunkett, Robert
Pooser, Raphael
Preskill, John
Rajendran, Surjeet
Sushkov, Alex
Walsworth, Ronald
Publication Year :
2021

Abstract

A subset of QuantISED Sensor PIs met virtually on May 26, 2020 to discuss a response to a charge by the DOE Office of High Energy Physics. In this document, we summarize the QuantISED sensor community discussion, including a consideration of HEP science enabled by quantum sensors, describing the distinction between Quantum 1.0 and Quantum 2.0, and discussing synergies/complementarity with the new DOE NQI centers and with research supported by other SC offices. Quantum 2.0 advances in sensor technology offer many opportunities and new approaches for HEP experiments. The DOE HEP QuantISED program could support a portfolio of small experiments based on these advances. QuantISED experiments could use sensor technologies that exemplify Quantum 2.0 breakthroughs. They would strive to achieve new HEP science results, while possibly spinning off other domain science applications or serving as pathfinders for future HEP science targets. QuantISED experiments should be led by a DOE laboratory, to take advantage of laboratory technical resources, infrastructure, and expertise in the safe and efficient construction, operation, and review of experiments. The QuantISED PIs emphasized that the quest for HEP science results under the QuantISED program is distinct from the ongoing DOE HEP programs on the energy, intensity, and cosmic frontiers. There is robust evidence for the existence of particles and phenomena beyond the Standard Model, including dark matter, dark energy, quantum gravity, and new physics responsible for neutrino masses, cosmic inflation, and the cosmic preference for matter over antimatter. Where is this physics and how do we find it? The QuantISED program can exploit new capabilities provided by quantum technology to probe these kinds of science questions in new ways and over a broader range of science parameters than can be achieved with conventional techniques.

Details

Database :
OAIster
Notes :
application/pdf, Opportunities for DOE National Laboratory-led QuantISED Experiments, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1262695561
Document Type :
Electronic Resource