Back to Search Start Over

Tri-Branch Convolutional Neural Networks for Top-$k$ Focused Academic Performance Prediction

Authors :
Cui, Chaoran
Zong, Jian
Ma, Yuling
Wang, Xinhua
Guo, Lei
Chen, Meng
Yin, Yilong
Cui, Chaoran
Zong, Jian
Ma, Yuling
Wang, Xinhua
Guo, Lei
Chen, Meng
Yin, Yilong
Publication Year :
2021

Abstract

Academic performance prediction aims to leverage student-related information to predict their future academic outcomes, which is beneficial to numerous educational applications, such as personalized teaching and academic early warning. In this paper, we address the problem by analyzing students' daily behavior trajectories, which can be comprehensively tracked with campus smartcard records. Different from previous studies, we propose a novel Tri-Branch CNN architecture, which is equipped with row-wise, column-wise, and depth-wise convolution and attention operations, to capture the characteristics of persistence, regularity, and temporal distribution of student behavior in an end-to-end manner, respectively. Also, we cast academic performance prediction as a top-$k$ ranking problem, and introduce a top-$k$ focused loss to ensure the accuracy of identifying academically at-risk students. Extensive experiments were carried out on a large-scale real-world dataset, and we show that our approach substantially outperforms recently proposed methods for academic performance prediction. For the sake of reproducibility, our codes have been released at https://github.com/ZongJ1111/Academic-Performance-Prediction.

Details

Database :
OAIster
Publication Type :
Electronic Resource
Accession number :
edsoai.on1269565933
Document Type :
Electronic Resource