Back to Search Start Over

Quantitative single-cell proteomics as a tool to characterize cellular hierarchies

Authors :
Schoof, Erwin M.
Furtwängler, Benjamin
Üresin, Nil
Rapin, Nicolas
Savickas, Simonas
Gentil, Coline
Lechman, Eric
Keller, Ulrich Auf dem
Dick, John E.
Porse, Bo T.
Schoof, Erwin M.
Furtwängler, Benjamin
Üresin, Nil
Rapin, Nicolas
Savickas, Simonas
Gentil, Coline
Lechman, Eric
Keller, Ulrich Auf dem
Dick, John E.
Porse, Bo T.
Source :
Schoof , E M , Furtwängler , B , Üresin , N , Rapin , N , Savickas , S , Gentil , C , Lechman , E , Keller , U A D , Dick , J E & Porse , B T 2021 , ' Quantitative single-cell proteomics as a tool to characterize cellular hierarchies ' , Nature Communications , vol. 12 , 3341 .
Publication Year :
2021

Abstract

Large-scale single-cell analyses are of fundamental importance in order to capture biological heterogeneity within complex cell systems, but have largely been limited to RNA-based technologies. Here we present a comprehensive benchmarked experimental and computational workflow, which establishes global single-cell mass spectrometry-based proteomics as a tool for large-scale single-cell analyses. By exploiting a primary leukemia model system, we demonstrate both through pre-enrichment of cell populations and through a non-enriched unbiased approach that our workflow enables the exploration of cellular heterogeneity within this aberrant developmental hierarchy. Our approach is capable of consistently quantifying ~1000 proteins per cell across thousands of individual cells using limited instrument time. Furthermore, we develop a computational workflow (SCeptre) that effectively normalizes the data, integrates available FACS data and facilitates downstream analysis. The approach presented here lays a foundation for implementing global single-cell proteomics studies across the world.

Details

Database :
OAIster
Journal :
Schoof , E M , Furtwängler , B , Üresin , N , Rapin , N , Savickas , S , Gentil , C , Lechman , E , Keller , U A D , Dick , J E & Porse , B T 2021 , ' Quantitative single-cell proteomics as a tool to characterize cellular hierarchies ' , Nature Communications , vol. 12 , 3341 .
Notes :
application/pdf, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1280590882
Document Type :
Electronic Resource