Back to Search Start Over

Fine tuning the extracellular environment accelerates the derivation of kidney organoids from human pluripotent stem cells

Authors :
Agencia Estatal de Investigación (España)
European Commission
Ministerio de Economía y Competitividad (España)
Ministerio de Ciencia, Innovación y Universidades (España)
Generalitat de Catalunya
Asociación Española Contra el Cáncer
Fundación la Caixa
G. Harold & Leila Y. Mathers Foundation
Helmsley Charitable Trust
National Institutes of Health (US)
Universidad Católica de San Antonio (España)
Instituto de Salud Carlos III
Garreta, Elena
Prado, Patricia
Tarantino, Carolina
Oria, Roger
Fanlo, Lucía
Martí, Elisa
Zalvidea, Dobryna
Trepat, Xavier
Roca-Cusachs, Pere
Gavaldà-Navarro, Aleix
Cozzuto, Luca
Campistol, Josep M.
Izpisúa Belmonte, Juan Carlos
Hurtado del Pozo, Carmen
Montserrat, Núria
Agencia Estatal de Investigación (España)
European Commission
Ministerio de Economía y Competitividad (España)
Ministerio de Ciencia, Innovación y Universidades (España)
Generalitat de Catalunya
Asociación Española Contra el Cáncer
Fundación la Caixa
G. Harold & Leila Y. Mathers Foundation
Helmsley Charitable Trust
National Institutes of Health (US)
Universidad Católica de San Antonio (España)
Instituto de Salud Carlos III
Garreta, Elena
Prado, Patricia
Tarantino, Carolina
Oria, Roger
Fanlo, Lucía
Martí, Elisa
Zalvidea, Dobryna
Trepat, Xavier
Roca-Cusachs, Pere
Gavaldà-Navarro, Aleix
Cozzuto, Luca
Campistol, Josep M.
Izpisúa Belmonte, Juan Carlos
Hurtado del Pozo, Carmen
Montserrat, Núria
Publication Year :
2019

Abstract

The generation of organoids is one of the biggest scientific advances in regenerative medicine. Here, by lengthening the time that human pluripotent stem cells (hPSCs) were exposed to a three-dimensional microenvironment, and by applying defined renal inductive signals, we generated kidney organoids that transcriptomically matched second-trimester human fetal kidneys. We validated these results using ex vivo and in vitro assays that model renal development. Furthermore, we developed a transplantation method that utilizes the chick chorioallantoic membrane. This approach created a soft in vivo microenvironment that promoted the growth and differentiation of implanted kidney organoids, as well as providing a vascular component. The stiffness of the in ovo chorioallantoic membrane microenvironment was recapitulated in vitro by fabricating compliant hydrogels. These biomaterials promoted the efficient generation of renal vesicles and nephron structures, demonstrating that a soft environment accelerates the differentiation of hPSC-derived kidney organoids.

Details

Database :
OAIster
Publication Type :
Electronic Resource
Accession number :
edsoai.on1286537701
Document Type :
Electronic Resource