Back to Search Start Over

Na+ controls hypoxic signalling by the mitochondrial respiratory chain

Authors :
Instituto de Salud Carlos III
Agencia Estatal de Investigación (España)
European Commission
Ministerio de Ciencia, Innovación y Universidades (España)
Comunidad de Madrid
Fundación Domingo Martínez
Human Frontier Science Program
Fundación BBVA
Banco Santander
Universidad Complutense de Madrid
Eusko Jaurlaritza
Swiss National Science Foundation
Universidad Autónoma de Madrid
Hernansanz-Agustín, Pablo
Choya-Foces, Carmen
Carregal-Romero, Susana
Ramos, Elena
Oliva, Tamara
Villa-Piña, Tamara
Moreno Capellán, Laura
Izquierdo-Álvarez, Alicia
Cabrera-García, J. Daniel
Cortés, Ana
Lechuga-Vieco, Ana V.
Jadiya, Pooja
Navarro, Elena
Parada, Esther
Palomino-Antolín, Alejandra
Tello, Daniel
Acín-Pérez, Rebeca
Rodríguez-Aguilera, Juan Carlos
Navas, Plácido
Cogolludo, Angel
López-Montero, Iván
Martínez-del-Pozo, Álvaro
Egea, Javier
López, Manuela G.
Elrod, John W.
Ruiz-Cabello, Jesús
Bogdanova, Anna
Enríquez, José Antonio
Martínez-Ruiz, Antonio
Instituto de Salud Carlos III
Agencia Estatal de Investigación (España)
European Commission
Ministerio de Ciencia, Innovación y Universidades (España)
Comunidad de Madrid
Fundación Domingo Martínez
Human Frontier Science Program
Fundación BBVA
Banco Santander
Universidad Complutense de Madrid
Eusko Jaurlaritza
Swiss National Science Foundation
Universidad Autónoma de Madrid
Hernansanz-Agustín, Pablo
Choya-Foces, Carmen
Carregal-Romero, Susana
Ramos, Elena
Oliva, Tamara
Villa-Piña, Tamara
Moreno Capellán, Laura
Izquierdo-Álvarez, Alicia
Cabrera-García, J. Daniel
Cortés, Ana
Lechuga-Vieco, Ana V.
Jadiya, Pooja
Navarro, Elena
Parada, Esther
Palomino-Antolín, Alejandra
Tello, Daniel
Acín-Pérez, Rebeca
Rodríguez-Aguilera, Juan Carlos
Navas, Plácido
Cogolludo, Angel
López-Montero, Iván
Martínez-del-Pozo, Álvaro
Egea, Javier
López, Manuela G.
Elrod, John W.
Ruiz-Cabello, Jesús
Bogdanova, Anna
Enríquez, José Antonio
Martínez-Ruiz, Antonio
Publication Year :
2020

Abstract

All metazoans depend on the consumption of O2 by the mitochondrial oxidative phosphorylation system (OXPHOS) to produce energy. In addition, the OXPHOS uses O2 to produce reactive oxygen species that can drive cell adaptations1,2,3,4, a phenomenon that occurs in hypoxia4,5,6,7,8 and whose precise mechanism remains unknown. Ca2+ is the best known ion that acts as a second messenger9, yet the role ascribed to Na+ is to serve as a mere mediator of membrane potential10. Here we show that Na+ acts as a second messenger that regulates OXPHOS function and the production of reactive oxygen species by modulating the fluidity of the inner mitochondrial membrane. A conformational shift in mitochondrial complex I during acute hypoxia11 drives acidification of the matrix and the release of free Ca2+ from calcium phosphate (CaP) precipitates. The concomitant activation of the mitochondrial Na+/Ca2+ exchanger promotes the import of Na+ into the matrix. Na+ interacts with phospholipids, reducing inner mitochondrial membrane fluidity and the mobility of free ubiquinone between complex II and complex III, but not inside supercomplexes. As a consequence, superoxide is produced at complex III. The inhibition of Na+ import through the Na+/Ca2+ exchanger is sufficient to block this pathway, preventing adaptation to hypoxia. These results reveal that Na+ controls OXPHOS function and redox signalling through an unexpected interaction with phospholipids, with profound consequences for cellular metabolism.

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1286557374
Document Type :
Electronic Resource