Back to Search Start Over

DEER-PREdict: Software for efficient calculation of spin-labeling EPR and NMR data from conformational ensembles

Authors :
Ministerio de Economía y Competitividad (España)
Crehuet, Ramon [0000-0002-6687-382X]
Tesei, Giulio
Martins, João M.
Kunze, Micha B.A.
Wang, Yong
Creuhet, Ramon
Lindorff-Larsen, Kresten
Ministerio de Economía y Competitividad (España)
Crehuet, Ramon [0000-0002-6687-382X]
Tesei, Giulio
Martins, João M.
Kunze, Micha B.A.
Wang, Yong
Creuhet, Ramon
Lindorff-Larsen, Kresten
Publication Year :
2021

Abstract

Owing to their plasticity, intrinsically disordered and multidomain proteins require descriptions based on multiple conformations, thus calling for techniques and analysis tools that are capable of dealing with conformational ensembles rather than a single protein structure. Here, we introduce DEER-PREdict, a software program to predict Double Electron-Electron Resonance distance distributions as well as Paramagnetic Relaxation Enhancement rates from ensembles of protein conformations. DEER-PREdict uses an established rotamer library approach to describe the paramagnetic probes which are bound covalently to the protein.DEER-PREdict has been designed to operate efficiently on large conformational ensembles, such as those generated by molecular dynamics simulation, to facilitate the validation or refinement of molecular models as well as the interpretation of experimental data. The performance and accuracy of the software is demonstrated with experimentally characterized protein systems: HIV-1 protease, T4 Lysozyme and Acyl-CoA-binding protein. DEER-PREdict is open source (GPLv3) and available at github.com/KULL-Centre/DEERpredict and as a Python PyPI package pypi.org/project/DEERPREdict.

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1286565919
Document Type :
Electronic Resource