Back to Search Start Over

Polygenic Risk Scores for Prediction of Breast Cancer and Breast Cancer Subtypes.

Authors :
Mavaddat, Nasim
Mavaddat, Nasim
Michailidou, Kyriaki
Dennis, Joe
Lush, Michael
Fachal, Laura
Lee, Andrew
Tyrer, Jonathan P
Chen, Ting-Huei
Wang, Qin
Bolla, Manjeet K
Yang, Xin
Adank, Muriel A
Ahearn, Thomas
Aittomäki, Kristiina
Allen, Jamie
Andrulis, Irene L
Anton-Culver, Hoda
Antonenkova, Natalia N
Arndt, Volker
Aronson, Kristan J
Auer, Paul L
Auvinen, Päivi
Barrdahl, Myrto
Beane Freeman, Laura E
Beckmann, Matthias W
Behrens, Sabine
Benitez, Javier
Bermisheva, Marina
Bernstein, Leslie
Blomqvist, Carl
Bogdanova, Natalia V
Bojesen, Stig E
Bonanni, Bernardo
Børresen-Dale, Anne-Lise
Brauch, Hiltrud
Bremer, Michael
Brenner, Hermann
Brentnall, Adam
Brock, Ian W
Brooks-Wilson, Angela
Brucker, Sara Y
Brüning, Thomas
Burwinkel, Barbara
Campa, Daniele
Carter, Brian D
Castelao, Jose E
Chanock, Stephen J
Chlebowski, Rowan
Christiansen, Hans
Clarke, Christine L
Collée, J Margriet
Cordina-Duverger, Emilie
Cornelissen, Sten
Couch, Fergus J
Cox, Angela
Cross, Simon S
Czene, Kamila
Daly, Mary B
Devilee, Peter
Dörk, Thilo
Dos-Santos-Silva, Isabel
Dumont, Martine
Durcan, Lorraine
Dwek, Miriam
Eccles, Diana M
Ekici, Arif B
Eliassen, A Heather
Ellberg, Carolina
Engel, Christoph
Eriksson, Mikael
Evans, D Gareth
Fasching, Peter A
Figueroa, Jonine
Fletcher, Olivia
Flyger, Henrik
Försti, Asta
Fritschi, Lin
Gabrielson, Marike
Gago-Dominguez, Manuela
Gapstur, Susan M
García-Sáenz, José A
Gaudet, Mia M
Georgoulias, Vassilios
Giles, Graham G
Gilyazova, Irina R
Glendon, Gord
Goldberg, Mark S
Goldgar, David E
González-Neira, Anna
Grenaker Alnæs, Grethe I
Grip, Mervi
Gronwald, Jacek
Grundy, Anne
Guénel, Pascal
Haeberle, Lothar
Hahnen, Eric
Haiman, Christopher A
Håkansson, Niclas
Hamann, Ute
Hankinson, Susan E
Mavaddat, Nasim
Mavaddat, Nasim
Michailidou, Kyriaki
Dennis, Joe
Lush, Michael
Fachal, Laura
Lee, Andrew
Tyrer, Jonathan P
Chen, Ting-Huei
Wang, Qin
Bolla, Manjeet K
Yang, Xin
Adank, Muriel A
Ahearn, Thomas
Aittomäki, Kristiina
Allen, Jamie
Andrulis, Irene L
Anton-Culver, Hoda
Antonenkova, Natalia N
Arndt, Volker
Aronson, Kristan J
Auer, Paul L
Auvinen, Päivi
Barrdahl, Myrto
Beane Freeman, Laura E
Beckmann, Matthias W
Behrens, Sabine
Benitez, Javier
Bermisheva, Marina
Bernstein, Leslie
Blomqvist, Carl
Bogdanova, Natalia V
Bojesen, Stig E
Bonanni, Bernardo
Børresen-Dale, Anne-Lise
Brauch, Hiltrud
Bremer, Michael
Brenner, Hermann
Brentnall, Adam
Brock, Ian W
Brooks-Wilson, Angela
Brucker, Sara Y
Brüning, Thomas
Burwinkel, Barbara
Campa, Daniele
Carter, Brian D
Castelao, Jose E
Chanock, Stephen J
Chlebowski, Rowan
Christiansen, Hans
Clarke, Christine L
Collée, J Margriet
Cordina-Duverger, Emilie
Cornelissen, Sten
Couch, Fergus J
Cox, Angela
Cross, Simon S
Czene, Kamila
Daly, Mary B
Devilee, Peter
Dörk, Thilo
Dos-Santos-Silva, Isabel
Dumont, Martine
Durcan, Lorraine
Dwek, Miriam
Eccles, Diana M
Ekici, Arif B
Eliassen, A Heather
Ellberg, Carolina
Engel, Christoph
Eriksson, Mikael
Evans, D Gareth
Fasching, Peter A
Figueroa, Jonine
Fletcher, Olivia
Flyger, Henrik
Försti, Asta
Fritschi, Lin
Gabrielson, Marike
Gago-Dominguez, Manuela
Gapstur, Susan M
García-Sáenz, José A
Gaudet, Mia M
Georgoulias, Vassilios
Giles, Graham G
Gilyazova, Irina R
Glendon, Gord
Goldberg, Mark S
Goldgar, David E
González-Neira, Anna
Grenaker Alnæs, Grethe I
Grip, Mervi
Gronwald, Jacek
Grundy, Anne
Guénel, Pascal
Haeberle, Lothar
Hahnen, Eric
Haiman, Christopher A
Håkansson, Niclas
Hamann, Ute
Hankinson, Susan E
Source :
American journal of human genetics; vol 104, iss 1, 21-34; 0002-9297
Publication Year :
2019

Abstract

Stratification of women according to their risk of breast cancer based on polygenic risk scores (PRSs) could improve screening and prevention strategies. Our aim was to develop PRSs, optimized for prediction of estrogen receptor (ER)-specific disease, from the largest available genome-wide association dataset and to empirically validate the PRSs in prospective studies. The development dataset comprised 94,075 case subjects and 75,017 control subjects of European ancestry from 69 studies, divided into training and validation sets. Samples were genotyped using genome-wide arrays, and single-nucleotide polymorphisms (SNPs) were selected by stepwise regression or lasso penalized regression. The best performing PRSs were validated in an independent test set comprising 11,428 case subjects and 18,323 control subjects from 10 prospective studies and 190,040 women from UK Biobank (3,215 incident breast cancers). For the best PRSs (313 SNPs), the odds ratio for overall disease per 1 standard deviation in ten prospective studies was 1.61 (95%CI: 1.57-1.65) with area under receiver-operator curve (AUC) = 0.630 (95%CI: 0.628-0.651). The lifetime risk of overall breast cancer in the top centile of the PRSs was 32.6%. Compared with women in the middle quintile, those in the highest 1% of risk had 4.37- and 2.78-fold risks, and those in the lowest 1% of risk had 0.16- and 0.27-fold risks, of developing ER-positive and ER-negative disease, respectively. Goodness-of-fit tests indicated that this PRS was well calibrated and predicts disease risk accurately in the tails of the distribution. This PRS is a powerful and reliable predictor of breast cancer risk that may improve breast cancer prevention programs.

Details

Database :
OAIster
Journal :
American journal of human genetics; vol 104, iss 1, 21-34; 0002-9297
Notes :
application/pdf, American journal of human genetics vol 104, iss 1, 21-34 0002-9297
Publication Type :
Electronic Resource
Accession number :
edsoai.on1287297886
Document Type :
Electronic Resource