Back to Search
Start Over
Response of oceanic hydrate-bearing sediments to thermal stresses
- Publication Year :
- 2006
-
Abstract
- In this study, we evaluate the response of oceanic subsurface systems to thermal stresses caused by the flow of warm fluids through noninsulated well systems crossing hydrate-bearing sediments. Heat transport from warm fluids, originating from deeper reservoirs under production, into the geologic media can cause dissociation of the gas hydrates. The objective of this study is to determine whether gas evolution from hydrate dissociation can lead to excessive pressure buildup, and possibly to fracturing of hydrate-bearing formations and their confining layers, with potentially adverse consequences on the stability of the suboceanic subsurface. This study also aims to determine whether the loss of the hydrate--known to have a strong cementing effect on the porous media--in the vicinity of the well, coupled with the significant pressure increases, can undermine the structural stability of the well assembly.Scoping 1D simulations indicated that the formation intrinsic permeability, the pore compressibility, the temperature of the produced fluids and the initial hydrate saturation are the most important factors affecting the system response, while the thermal conductivity and porosity (above a certain level) appear to have a secondary effect. Large-scale simulations of realistic systems were also conducted, involving complex well designs and multilayered geologic media with nonuniform distribution of properties and initial hydrate saturations that are typical of those expected in natural oceanic systems. The results of the 2D study indicate that although the dissociation radius remains rather limited even after long-term production, low intrinsic permeability and/or high hydrate saturation can lead to the evolution of high pressures that can threaten the formation and its boundaries with fracturing. Although lower maximum pressures are observed in the absence of bottom confining layers and in deeper (and thus warmer and more pressurized) systems, the reduction is limited.
Details
- Database :
- OAIster
- Notes :
- application/pdf
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1287587326
- Document Type :
- Electronic Resource